卧薪尝胆,厚积薄发。
Gcd and Phi
Date: Sat Aug 25 21:41:24 CST 2018
In Category:
NoCategory
Description:
求
$\begin{align}\sum_{i=1}^n\sum_{j=1}^n\varphi(gcd(\varphi(i),\varphi(j)))\end{align}$
$1\le n \le 2\times 10^6$
Solution:
先枚举
$gcd$
,
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{i=1}^n\sum_{j=1}^n[gcd(\varphi(i),\varphi(j))=d]\end{align}$
然后似乎没什么办法了,然而可以枚举
$\varphi(i)$
和
$\varphi(j)$
。
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{i=1}^n\sum_{j=1}^ns[i]\times s[j]\times [gcd(i,j)=d]\end{align}$
$s[i]$
表示
$[1,n]$
中有多少个数的欧拉函数值为
$i$
,后面就可以反演了。
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor \frac n d\rfloor}\sum_{j=1}^{\lfloor \frac n d\rfloor}s[id]\times s[jd]\times [gcd(i,j)=1]\end{align}$
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor \frac n d\rfloor}\sum_{j=1}^{\lfloor \frac n d\rfloor}s[id]\times s[jd]\times \sum_{k|i,k|j}\mu(k)\end{align}$
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{k=1}^{\lfloor\frac n d\rfloor}\mu(k)(\sum_{k|i,i=1}^{\lfloor \frac n d\rfloor}s[id])^2\end{align}$
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{k=1}^{\lfloor\frac n d\rfloor}\mu(k)(\sum_{i=1}^{\lfloor \frac n {dk}\rfloor}s[idk])^2\end{align}$
设
$\begin{align}f(k)=\sum_{i=1}^{\lfloor\frac n k\rfloor}s[ik]\end{align}$
,则
$\begin{align}原式&=\sum_{d=1}^n\varphi(d)\sum_{k=1}^{\lfloor\frac n d\rfloor}\mu(k)f(dk)^2\end{align}$
$f$
可以暴力预处理,因为由调和级数得
$\begin{align}\sum_{i=1}^n\frac 1 i=\ln n+\gamma\end{align}$
最后答案也可以暴力求。
枚举
$\varphi$
是个好技巧。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n;
#define MAXN 2000010
bool isprime[MAXN];
int prime[MAXN],tot = 0;
int mu[MAXN],phi[MAXN];
typedef long long ll;
int s[MAXN];
ll f[MAXN];
inline void work()
{
scanf("%d",&n);
tot = 0;
for(register int i = 2;i <= n;++i)isprime[i] = true;
mu[1] = 1;phi[1] = 1;
for(register int i = 2;i <= n;++i)
{
if(isprime[i])
{
prime[++tot] = i;
mu[i] = -1;phi[i] = i - 1;
}
for(register int j = 1;j <= tot && i * prime[j] <= n;++j)
{
register int k = i * prime[j];
isprime[k] = false;
if(i % prime[j] == 0)
{
mu[k] = 0;phi[k] = phi[i] * prime[j];
break;
}
else
{
mu[k] = -mu[i];phi[k] = phi[i] * phi[prime[j]];
}
}
}
memset(s,0,sizeof(s));
memset(f,0,sizeof(f));
for(register int i = 1;i <= n;++i)++s[phi[i]];
for(register int i = 1;i <= n;++i)
for(register int j = i;j <= n;j += i)
f[i] += s[j];
register ll ans = 0;
for(register int i = 1;i <= n;++i)
for(register int j = 1;j <= n / i;++j)
ans += phi[i] * mu[j] * f[i * j] * f[i * j];
cout << ans << endl;
return;
}
int main()
{
int testcases = 0;
scanf("%d",&testcases);
while(testcases--)work();
return 0;
}
In tag:
数学-莫比乌斯反演
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡