卧薪尝胆,厚积薄发。
Union on Tree
Date: Mon Feb 25 08:57:12 CST 2019
In Category:
NoCategory
Description:
给出一棵树,每次给出一个集合,元素
$(p,r)$
表示标记了距离
$p$
不超过
$r$
的点,求出一共标记的多少点。
$1\leqslant n\leqslant 10^5$
Solution:
首先肯定会想到建虚树,把边拆点,这样对于虚树上的每条边到两端点距离相等的位置一定在某个点上,可以用动态点分治来求距离某个点不超过
$r$
的点的个数,然后先一遍
$dfs$
预处理出从虚树上每个点可以延伸出去的长度,然后把每个点统计的答案都加上,最后考虑虚树上的每条边有哪些点被重复计算了,倍增找到
$mid$
使得两个边的端点在
$mid$
这个点上具有相同的延伸长度,然后减掉重复的贡献即可。
Code:
#pragma GCC optimize("O2,Ofast,inline,unroll-all-loops,-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
#pragma GCC optimaze(2)
using namespace std;
inline int rd()
{
register int res = 0;register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res;
}
int n,m;
#define MAXN 100010
#define INF 0x3f3f3f3f
struct edge{int to,nxt;}e[MAXN << 1];
int edgenum = 0,lin[MAXN] = {0};
inline void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int dep[MAXN],dfn[MAXN],tot = 0;
namespace D
{
int f[MAXN][16];
inline int skip_to_dep(int k,int depth)
{
for(register int i = 15;i >= 0;--i)if(dep[f[k][i]] >= depth)k = f[k][i];
return k;
}
inline int LCA(int a,int b)
{
if(dep[a] < dep[b])swap(a,b);
a = skip_to_dep(a,dep[b]);
if(a == b)return a;
for(register int i = 15;i >= 0;--i)
if(f[a][i] != f[b][i])a = f[a][i],b = f[b][i];
return f[a][0];
}
inline int dis(int a,int b)
{
return dep[a] + dep[b] - 2 * dep[LCA(a,b)];
}
}
void dfs(int k,int fa)
{
dep[k] = dep[fa] + 1;
dfn[k] = ++tot;
for(register int i = 1;i <= 15;++i)
D::f[k][i] = D::f[D::f[k][i - 1]][i - 1];
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa)continue;
D::f[e[i].to][0] = k;
dfs(e[i].to,k);
}
return;
}
#define pb push_back
namespace P
{
vector<int> sum[MAXN],tofa[MAXN];
int fa[MAXN];
int root,s,siz[MAXN],d[MAXN];
bool vis[MAXN];
void getroot(int k,int fa)
{
siz[k] = 1;d[k] = 0;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(vis[e[i].to] || e[i].to == fa)continue;
getroot(e[i].to,k);
siz[k] += siz[e[i].to];
d[k] = max(d[k],siz[e[i].to]);
}
d[k] = max(d[k],s - siz[k]);
if(d[k] < d[root])root = k;
return;
}
void divide(int k)
{
vis[k] = true;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(vis[e[i].to])continue;
root = 0;s = siz[e[i].to];getroot(e[i].to,0);
fa[root] = k;divide(root);
}
return;
}
vector<int> di[MAXN];
inline void add(int k)
{
sum[k].pb(0);
for(register int i = k;fa[i] != 0;i = fa[i])
{
register int dist = D::dis(k,fa[i]);
sum[fa[i]].pb(dist);
tofa[i].pb(dist);
}
return;
}
inline void get(int k)
{
for(register int i = k;fa[i] != 0;i = fa[i])di[k].pb(D::dis(k,fa[i]));
return;
}
inline int count(int k,int r)
{
if(r == -1)return 0;if(r == 0)return 1;
register int ans = upper_bound(sum[k].begin(),sum[k].end(),r) - sum[k].begin();//cout << ans << endl;
for(register int i = k,cur = 0;fa[i] != 0;i = fa[i],++cur)
{
ans += upper_bound(sum[fa[i]].begin(),sum[fa[i]].end(),r - di[k][cur]) - sum[fa[i]].begin();
ans -= upper_bound(tofa[i].begin(),tofa[i].end(),r - di[k][cur]) - tofa[i].begin();
}
return ans;
}
}
int p[MAXN],r[MAXN];
bool cmp_dfn(int a,int b){return dfn[a] < dfn[b];}
int stack[MAXN],top = 0;
vector<int> g[MAXN];
void dfs1(int k)
{
for(register vector<int>::iterator it = g[k].begin();it != g[k].end();++it)
{
dfs1(*it);
r[k] = max(r[k],r[*it] - (dep[*it] - dep[k]));
}
return;
}
long long ans;
void dp(int k)
{
ans = ans + P::count(k,r[k]);//cout << k << " " << P::count(k,r[k]) << endl;
for(register vector<int>::iterator it = g[k].begin();it != g[k].end();++it)
{
r[*it] = max(r[*it],r[k] - D::dis(k,*it));
if(dep[*it] - dep[k] <= r[k] + r[*it])
{
register int mid = D::skip_to_dep(*it,(r[k] - r[*it] + dep[k] + dep[*it]) / 2);//cout << r[k] << " " << r[*it] << " " << r[k] - r[*it] << " " << dep[k] + dep[*it] << " " << (r[k] - r[*it] + dep[k] + dep[*it]) << endl;
ans = ans - P::count(mid,r[k] - (dep[mid] - dep[k]));//cout << k << " -> " << *it << " " << mid << endl;
}
dp(*it);
}
r[k] = -1;
g[k].clear();
return;
}
int main()
{
scanf("%d",&n);
for(register int i = 1;i < n;++i)add(rd(),i + n),add(rd(),i + n);
dfs(1,0);
P::root = 0;P::s = n;P::d[0] = INF;
P::getroot(1,0);P::divide(P::root);
for(register int i = 1;i <= n;++i)P::add(i);
for(register int i = 1;i <= n * 2 - 1;++i)
{
P::get(i);
P::sum[i].pb(INF);P::tofa[i].pb(INF);
sort(P::sum[i].begin(),P::sum[i].end());
sort(P::tofa[i].begin(),P::tofa[i].end());
}
memset(r,-1,sizeof(r));
scanf("%d",&m);
for(register int i = 1;i <= m;++i)
{
p[0] = rd();
for(register int k = 1;k <= p[0];++k){p[k] = rd();r[p[k]] = rd() * 2;}
sort(p + 1,p + 1 + p[0],cmp_dfn);
stack[top = 1] = p[1];
for(register int i = 2;i <= p[0];++i)
{
register int lca = D::LCA(stack[top],p[i]);
if(lca == stack[top]){stack[++top] = p[i];continue;}
while(top >= 2)
{
if(dfn[lca] < dfn[stack[top - 1]]){g[stack[top - 1]].pb(stack[top]);--top;}
else{g[lca].pb(stack[top]);--top;break;}
}
if(top == 1 && dfn[lca] < dfn[stack[1]]){g[lca].pb(stack[1]);stack[1] = lca;}
if(stack[top] != lca)stack[++top] = lca;
stack[++top] = p[i];
}
while(top >= 2)g[stack[top - 1]].pb(stack[top]),--top;
dfs1(stack[1]);
ans = 0;
dp(stack[1]);
printf("%lld\n",ans);
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡