卧薪尝胆,厚积薄发。
Enlarge GCD
Date: Sat Nov 03 07:06:09 CST 2018 In Category: NoCategory

Description:

给你 $n$ 个数,问至少删掉几个数使得 $\gcd$ 变大。
$1\leqslant n\leqslant 3\times 10^5,1\leqslant a[i]\leqslant 1.5\times 10^7$

Solution:

首先把所有数除以 $\gcd$ ,然后线性筛一下,统计一下每个质数出现了多少次,那么就需要删掉 $n-cnt$ 个数,把答案取个 $\min$ 即可。

Code:


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
#define MAXN 300010
#define MAX 15000010
bool isprime[MAX];
int prime[MAX],tot = 0;
int mindiv[MAX];
int n;
#define MAXN 300010
int a[MAXN];
int cnt[MAX];
int gcd(int a,int b){return b == 0 ? a : gcd(b,a % b);}
int main()
{
for(int i = 2;i < MAX;++i)isprime[i] = true;
for(int i = 2;i < MAX;++i)
{
if(isprime[i])
{
prime[++tot] = i;
mindiv[i] = i;
}
for(int j = 1;j <= tot && i * prime[j] < MAX;++j)
{
isprime[i * prime[j]] = false;
mindiv[i * prime[j]] = prime[j];
if(i % prime[j] == 0)break;
}
}
scanf("%d",&n);
for(int i = 1;i <= n;++i)scanf("%d",&a[i]);
int g = 0;
for(int i = 1;i <= n;++i)g = gcd(g,a[i]);
bool tag = true;
for(int i = 1;i <= n;++i)
{
if(a[i] != g)
{
tag = false;
break;
}
}
if(tag)
{
puts("-1");
return 0;
}
for(int i = 1;i <= n;++i)a[i] /= g;
for(int i = 1;i <= n;++i)
{
int s = a[i];
while(s != 1)
{
int k = mindiv[s];
++cnt[k];
while(s % k == 0)s /= k;
}
}
int maxv = 0;
for(int i = 1;i <= tot;++i)
{
maxv = max(maxv,cnt[prime[i]]);
}
cout << n - maxv << endl;
return 0;
}
In tag: 数学-筛法
Copyright © 2020 wjh15101051
ღゝ◡╹)ノ♡