卧薪尝胆,厚积薄发。
Hyperspace Highways
Date: Sat Oct 27 13:59:56 CST 2018 In Category: NoCategory

Description:

给一个图,保证每个点双都是一个团,多次询问两点间最短路。
$1\leqslant n\leqslant 10^5,1\leqslant m\leqslant 3\times 10^5$

Solution:

先把点双缩点,建一棵圆方树,把边权设成 $0.5$ ,这时树上两个点的距离就是原图中两个点的距离,树剖即可。

Code:


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cctype>
#include<cstring>
using namespace std;
int n,m,q;
#define MAXN 200010
#define MAXM 500010
struct edge
{
int to,nxt;
}e[MAXM << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
++edgenum;e[edgenum].to = b;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
int dfn[MAXN],low[MAXN],tot = 0;
stack<int> s;
struct edges
{
int u,v;
}es[MAXN];
int en = 0;
int cur;
void tarjan(int k)
{
dfn[k] = low[k] = ++tot;
s.push(k);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(dfn[e[i].to] == 0)
{
tarjan(e[i].to);
low[k] = min(low[k],low[e[i].to]);
if(low[e[i].to] >= dfn[k])
{
++cur;
int t;
do
{
t = s.top();s.pop();
es[++en] = (edges){t,cur};
}while(t != e[i].to);
es[++en] = (edges){k,cur};
}
}
else
{
low[k] = min(low[k],dfn[e[i].to]);
}
}
return;
}
int top[MAXN],dep[MAXN],siz[MAXN],son[MAXN],fa[MAXN];
void dfs1(int k,int depth)
{
dep[k] = depth;
siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k])
{
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])
{
son[k] = e[i].to;
}
}
}
return;
}
void dfs2(int k,int tp)
{
top[k] = tp;
if(son[k] == 0)return;
dfs2(son[k],tp);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fa[top[a]];
}
return (dep[a] < dep[b] ? a : b);
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
int a,b;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
cur = n;
for(int i = 1;i <= n;++i)
{
if(dfn[i] == 0)tarjan(i);
}
memset(lin,0,sizeof(lin));
edgenum = 0;
for(int i = 1;i <= en;++i)
{
add(es[i].u,es[i].v);
}
dfs1(1,1);dfs2(1,1);
for(int i = 1;i <= q;++i)
{
scanf("%d%d",&a,&b);
printf("%d\n",(dep[a] + dep[b] - 2 * dep[LCA(a,b)]) / 2);
}
return 0;
}
Copyright © 2020 wjh15101051
ღゝ◡╹)ノ♡