卧薪尝胆,厚积薄发。
Most Dangerous Shark
Date: Sun Feb 24 15:35:35 CST 2019
In Category:
NoCategory
Description:
给一排多米诺骨牌,朝某个方向放倒某个骨牌花费一定的费用,求用最小的费用使得所有骨牌都倒下。
$1\leqslant n\leqslant 10^7$
Solution:
首先预处理出
$lef[i]$
和
$rig[i]$
表示朝某个方向放倒第
$i$
个骨牌回放到的最远一个骨牌,然后就可以
$DP$
了,设
$f[i]$
表示
$i$
这个前缀的骨牌都倒了的最小花费,那么
$i$
有两种可能,一是往左倒,二是被一个向右倒的放倒,于是开一个树状数组记录向右倒到每个位置的最小花费,那么显然只有当这个位置大于等于
$i$
时
$i$
会被放倒,这个也就是个后缀最小值,可以用树状数组维护,转移方程是:
$$
\begin{align}
&f[i]=\min(f[lef[i]-1]+cst[i],querymin(i,n))\\
&add(rig[i],f[i-1]+cst[i])
\end{align}
$$
Code:
#include<bits/stdc++.h>
using namespace std;
int n,m;
#define MAXN 250010
#define MAXM 10000010
#define INF 0x3f3f3f3f3f3f3f3f
typedef long long ll;
inline ll rd()
{
register ll res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int siz[MAXN];
vector< pair<int,ll> > v[MAXN];
#define fi first
#define se second
#define R register
int l;
vector< pair<int,ll> > a;
int lef[MAXM],rig[MAXM];
ll c[MAXM];
int lowbit(int x){return x & (-x);}
void add(int p,ll x){for(R int i = p;i >= 1;i -= lowbit(i))c[i] = min(c[i],x);return;}
ll query(int p){R ll res = INF;for(R int i = p;i <= m;i += lowbit(i))res = min(res,c[i]);return res;}
ll f[MAXM];
int main()
{
n = rd();m = rd();
for(R int i = 1;i <= n;++i)
{
siz[i] = rd();v[i].resize(siz[i]);
for(R int p = 0;p < siz[i];++p)v[i][p].fi = rd();
for(R int p = 0;p < siz[i];++p)v[i][p].se = rd();
}
l = rd();
R int id;
R ll mul;
memset(c,0x3f,sizeof(c));
a.push_back(make_pair(0,0));
for(R int i = 1;i <= l;++i)
{
id = rd();mul = rd();;
for(R int p = 0;p < v[id].size();++p)
{
a.push_back(v[id][p]);
a[a.size() - 1].se *= mul;
}
}
for(R int i = 1;i <= m;++i)
{
R int j = i;
while(j > 1 && j > i - a[i].fi + 1)j = lef[j - 1];
lef[i] = j;
}
for(R int i = m;i >= 1;--i)
{
R int j = i;
while(j < m && j < i + a[i].fi - 1)j = rig[j + 1];
rig[i] = j;
}
for(R int i = 1;i <= m;++i)
{
f[i] = min(f[lef[i] - 1] + a[i].se,query(i));
add(rig[i],f[i - 1] + a[i].se);
}
cout << f[m] << endl;
return 0;
}
In tag:
DP-数据结构优化DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡