卧薪尝胆,厚积薄发。
Cactus
Date: Sun Jun 24 19:17:37 CST 2018
In Category:
NoCategory
Description:
给你一棵仙人掌,询问两个点间路径条数。
$2\le N\le 2\times10^5$
$1\le M\le 10^5$
$1\le Q \le 10^5$
Solution:
对于一个简单环路径数乘
$2$
,对边双连通分量缩点,缩完的点
$v=2$
,本来就有的点
$v=1$
,
$LCT$
维护缩完点的树路径权值积即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cstring>
using namespace std;
int n,m;
int q;
#define MAX 200000
#define MOD 1000000007
struct edge
{
int to,nxt;
}e[MAX << 1];
int edgenum = 0;
int lin[MAX] = {0};
void add(int a,int b)
{
e[edgenum].to = b;e[edgenum].nxt = lin[a];lin[a] = edgenum;++edgenum;
e[edgenum].to = a;e[edgenum].nxt = lin[b];lin[b] = edgenum;++edgenum;
return;
}
int dfn[MAX],low[MAX],tot = 0;
bool bridge[MAX << 1];
void tarjan(int k,int ine)
{
dfn[k] = low[k] = ++tot;
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if((i >> 1) == ine)continue;
if(dfn[e[i].to] == 0)
{
tarjan(e[i].to,i >> 1);
low[k] = min(low[k],low[e[i].to]);
if(low[e[i].to] > dfn[k])
{
bridge[i] = bridge[i ^ 1] = true;
}
}
else
{
low[k] = min(low[k],dfn[e[i].to]);
}
}
return;
}
int ins[MAX],siz[MAX];
int edcc = 0;
bool v[MAX];
void dfs(int k)
{
ins[k] = edcc;v[k] = true;++siz[edcc];
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(!bridge[i] && !v[e[i].to])
{
dfs(e[i].to);
}
}
return;
}
struct node
{
int fa,c[2],v;
long long sum;
bool rev;
node(){fa = c[0] = c[1] = v = 0;sum = 0;rev = false;}
}t[MAX];
void maintain(int rt)
{
t[rt].sum = t[rt].v;
if(t[rt].c[0] != 0)t[rt].sum = t[rt].sum * t[t[rt].c[0]].sum % MOD;
if(t[rt].c[1] != 0)t[rt].sum = t[rt].sum * t[t[rt].c[1]].sum % MOD;
return;
}
void pushdown(int rt)
{
if(!t[rt].rev)return;
t[t[rt].c[0]].rev ^= 1;t[t[rt].c[1]].rev ^= 1;
swap(t[rt].c[0],t[rt].c[1]);t[rt].rev = false;
return;
}
bool isroot(int k){return (t[t[k].fa].c[0] != k && t[t[k].fa].c[1] != k);}
int id(int k){return (t[t[k].fa].c[0] == k ? 0 : 1);}
void connect(int k,int f,int p){t[k].fa = f;t[f].c[p] = k;return;}
void rotate(int x)
{
int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
if(!isroot(y))t[z].c[fy] = x;
t[x].fa = z;
connect(t[x].c[fx^1],y,fx);
connect(y,x,fx^1);
maintain(y);maintain(x);
return;
}
stack<int> s;
void splay(int x)
{
s.push(x);
for(int i = x;!isroot(i);i = t[i].fa)s.push(t[i].fa);
while(!s.empty()){pushdown(s.top());s.pop();}
while(!isroot(x))
{
int y = t[x].fa;
if(isroot(y)){rotate(x);break;}
if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
return;
}
void access(int k){for(int i = 0;k;i = k,k = t[k].fa){splay(k);t[k].c[1] = i;maintain(k);}return;}
void makeroot(int k){access(k);splay(k);t[k].rev ^= 1;return;}
void link(int x,int y){makeroot(x);t[x].fa = y;return;}
int findroot(int k){access(k);splay(k);while(t[k].c[0] != 0)k = t[k].c[0];return k;}
int main()
{
memset(lin,-1,sizeof(lin));
scanf("%d%d",&n,&m);
int a,b;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
tarjan(1,-1);
for(int i = 1;i <= n;++i)
{
if(!v[i])
{
++edcc;
dfs(i);
}
}
for(int i = 1;i <= edcc;++i)
{
t[i].v = siz[i] == 1 ? 1 : 2;
}
for(int k = 1;k <= n;++k)
{
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(ins[k] != ins[e[i].to] && findroot(ins[k]) != findroot(ins[e[i].to]))
{
link(ins[k],ins[e[i].to]);
}
}
}
scanf("%d",&q);
for(int i = 1;i <= q;++i)
{
scanf("%d%d",&a,&b);
a = ins[a];b = ins[b];
makeroot(a);access(b);splay(b);
printf("%lld\n",t[b].sum);
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡