卧薪尝胆,厚积薄发。
Trial for Chief
Date: Fri Jul 06 22:00:52 CST 2018
In Category:
NoCategory
Description:
要把一块大小为
$N\times M$
的白木板的某些格子涂成黑色。每次可以选择一个连通块,全涂白或者全涂黑,问最少要涂几次。
$N,M\le50$
Solution:
每个点和他周围四个点连边,颜色相同权值为
$0$
,不同权值为
$1$
,枚举每个点,求出它到最远的黑点的距离,取
$min+1$
即为答案。
举个例子:
$WB\ W$
$B\ WB\ $
$WB\ W$
如果以左上角为起点,则答案为:
0 1 2
1 2 3
2 3 4
代表先将右下角染完,再阶梯向上染。最后染到左上角。
如果以中间为起点,则结果为:
2 1 2
1 0 1
2 1 2
结果为
$3$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 51
char map[MAXN][MAXN];
char getc()
{
char c = getchar();
while(c != 'W' && c != 'B')c = getchar();
return c;
}
int to(int x,int y){return (x - 1) * m + y;}
struct edge
{
int to,nxt,v;
}e[MAXN * MAXN * 4 * 2];
int edgenum = 0;
int lin[MAXN * MAXN] = {0};
void add(int a,int b,int c)
{
++edgenum;e[edgenum].to = b;e[edgenum].v = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
return;
}
int d[MAXN * MAXN];
bool v[MAXN * MAXN];
void SPFA(int s)
{
memset(d,0x3f,sizeof(d));
memset(v,0,sizeof(v));
queue<int> q;
q.push(s);
d[s] = 0;
v[s] = true;
while(!q.empty())
{
int k = q.front();q.pop();
v[k] = false;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(d[e[i].to] > d[k] + e[i].v)
{
d[e[i].to] = d[k] + e[i].v;
if(!v[e[i].to])
{
v[e[i].to] = true;
q.push(e[i].to);
}
}
}
}
return;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= m;++j)
{
map[i][j] = getc();
}
}
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= m;++j)
{
if(i > 1)add(to(i,j),to(i - 1,j),(map[i][j] != map[i - 1][j] ? 1 : 0));
if(i < n)add(to(i,j),to(i + 1,j),(map[i][j] != map[i + 1][j] ? 1 : 0));
if(j > 1)add(to(i,j),to(i,j - 1),(map[i][j] != map[i][j - 1] ? 1 : 0));
if(j < m)add(to(i,j),to(i,j + 1),(map[i][j] != map[i][j + 1] ? 1 : 0));
}
}
int ans = 0x3f3f3f3f;
bool found = false;
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= m;++j)
{
int res = 0;
if(map[i][j] == 'B')found = true;
SPFA(to(i,j));
for(int i0 = 1;i0 <= n;++i0)
{
for(int j0 = 1;j0 <= m;++j0)
{
if(map[i0][j0] == 'B')
{
res = max(res,d[to(i0,j0)]);
}
}
}
ans = min(ans,res);
}
}
if(found)cout << ans + 1 << endl;
else puts("0");
return 0;
}
In tag:
图论-SPFA
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡