卧薪尝胆,厚积薄发。
Sum the Fibonacci
Date: Mon Mar 11 21:01:22 CST 2019
In Category:
NoCategory
Description:
给你一个长度为
$n$
的数组
$s$
,定义五元组
$(a,b,c,d,e)$
是合法的当且仅当:
$(s_a\text{ or }s_b)\text{ and }s_c\text{ and }(s_d\text{ xor }s_e)=2^i,i\in Z,s_a\text{ and }s_b=0$
对于所有合法的五元组
$(a,b,c,d,e)$
求
$\sum f(s_a\text{ or }s_b)\times f(s_c)\times f(s_d\text{ xor }s_e)\bmod 10^9+7$
。
$1\leqslant n\leqslant 10^5,1\leqslant s_i\leqslant 2^{17}$
Solution:
首先用一个
$cnt[s]$
来统计每种权值出现的次数,然后再求出:
$$
cnt_1[s]=\sum_{s_a\text{or}s_b=s,s_a\text{and}s_b=0}cnt[s_a]\times cnt[s_b]
$$
这个就是一个子集卷积,可以用占位多项式法求出。
$$
cnt_2[s]=\sum_{s_a\text{xor}s_b=s}cnt[s_a]\times cnt[s_b]
$$
这个可以
$FWT$
求出,然后再把
$cnt_1[s]f(s),cnt[s]f(s),cnt_2[s]f(s)$
与卷积起来就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 1000010
#define MAX 200000
int fib[MAXN];
int s[MAXN];
#define P 1000000007
#define INV2 500000004
void FWT_xor(int f[],int l,int type)
{
for(int i = 2;i <= l;i = i << 1)
{
for(int j = 0;j < l;j += i)
{
for(int k = j;k < j + i / 2;++k)
{
int u = f[k],t = f[k + i / 2];
f[k] = (u + t) % P;
f[k + i / 2] = (u - t + P) % P;
if(type == -1)
{
f[k] = 1ll * f[k] * INV2 % P;
f[k + i / 2] = 1ll * f[k + i / 2] * INV2 % P;
}
}
}
}
return;
}
void FWT_and(int f[],int l,int type)
{
for(int i = 2;i <= l;i = i << 1)
for(int j = 0;j < l;j += i)for(int k = j;k < j + i / 2;++k)
f[k] = (f[k] + 1ll * (P + type) * f[k + i / 2] % P) % P;
return;
}
void FWT_or(int f[],int l,int type)
{
for(int i = 2;i <= l;i = i << 1)
for(int j = 0;j < l;j += i)for(int k = j;k < j + i / 2;++k)
f[k + i / 2] = (f[k + i / 2] + 1ll * (P + type) * f[k] % P) % P;
return;
}
int bit[MAXN];
int cnt[MAXN],cnt2[MAXN],cnt3[MAXN];
int f[18][MAXN],g[18][MAXN];
void calc1(int cnt[],int cnt2[],int len)
{
for(int i = 0;i < len;++i)f[bit[i]][i] = cnt[i];
for(int i = 0;i <= 17;++i)FWT_or(f[i],len,1);
for(int i = 0;i <= 17;++i)for(int j = 0;j <= i;++j)
for(int s = 0;s < len;++s)
g[i][s] = (g[i][s] + 1ll * f[j][s] * f[i - j][s] % P) % P;
for(int i = 0;i <= 17;++i)FWT_or(g[i],len,-1);
for(int s = 0;s < len;++s)cnt2[s] = 1ll * g[bit[s]][s] * fib[s] % P;
return;
}
int ans[MAXN];
int main()
{
scanf("%d",&n);
int mx = 0;
for(int i = 1;i <= n;++i)scanf("%d",&s[i]);
for(int i = 1;i <= n;++i)mx = max(mx,s[i]);
int len = 1;
for(;len <= mx;len = len << 1);
for(int i = 1;i < len;++i)bit[i] = bit[i ^ (i & (-i))] + 1;
fib[0] = 0;fib[1] = 1;
for(int i = 2;i < MAX;++i)fib[i] = (fib[i - 1] + fib[i - 2]) % P;
for(int i = 1;i <= n;++i)++cnt[s[i]];
//for(int i = 0;i < len;++i)cout << cnt[i] << " ";cout << endl;
calc1(cnt,cnt2,len);
//for(int i = 0;i < len;++i)cout << cnt2[i] << " ";cout << endl;
//for(int i = 0;i < len;++i)cout << cnt[i] << " ";cout << endl;
FWT_xor(cnt,len,1);
for(int i = 0;i < len;++i)cnt3[i] = 1ll * cnt[i] * cnt[i] % P;
FWT_xor(cnt,len,-1);FWT_xor(cnt3,len,-1);
for(int i = 0;i < len;++i)cnt3[i] = 1ll * cnt3[i] * fib[i] % P;
//for(int i = 0;i < len;++i)cout << cnt3[i] << " ";cout << endl;
for(int i = 0;i < len;++i)cnt[i] = 1ll * cnt[i] * fib[i] % P;
//for(int i = 0;i < len;++i)cout << cnt[i] << " ";cout << endl;
FWT_and(cnt,len,1);FWT_and(cnt2,len,1);FWT_and(cnt3,len,1);
for(int i = 0;i < len;++i)ans[i] = 1ll * cnt[i] * cnt2[i] % P * cnt3[i] % P;
FWT_and(ans,len,-1);
//for(int i = 0;i < len;++i)cout << ans[i] << " ";cout << endl;
int cur = 1,res = 0;
while(cur < len)res = (res + ans[cur]) % P,cur = cur << 1;
cout << res << endl;
return 0;
}
In tag:
数学-多项式-快速沃尔什变换
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡