卧薪尝胆,厚积薄发。
Pollard-Rho大数分解算法
Date: Tue Jul 03 00:05:58 CST 2018
In Category:
总结
$Pollard$ - $Rho$
求出
$n$
的所有素因子。采用椭圆曲线分解法,先用
$millar$
-
$rabin$
判断是否是质数,若不是,为了更大概率地找到可能的因子,随机选取许多数
$x_1,x_2,\dots,x_m$
判断是否存在
$gcd(|x_i-x_j|,n)>1$
如果有,就找到了一个因子。
$pollard$
-
$rho$
构造出一列数再在相邻的数之间判断,数列的生成使用函数
$x_{n+1}=(x_n^2+k)\%n$
,这个数列由鸽巢原理得必有循环节,数列形状看起来就像
$\rho$
,采用高效的
$brent$
判环法,每次只计算
$x_k$
,当
$k$
是二的方幂时
$y=x_k$
,每次计算
$d=gcd(|x_k-y|,n)$
,找到因子时分成两部分递归处理。复杂度
$O(n^{\frac 1 4})$
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstring>
using namespace std;
typedef long long ll;
ll testcases;
ll n;
ll read()
{
register ll res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
ll prime[12] = {2ll,3ll,5ll,7ll,11ll,13ll,17ll,19ll,23ll,29ll,31ll,37ll};
inline ll mul(ll a,ll b,ll p)
{
ll d = ((long double)a / p * b + 1e-8);
ll r = a * b - d * p;
return (r > 0 ? r : r + p);
}
inline ll power(ll a,ll b,ll p)
{
register ll res = 1;
while(b > 0)
{
if(b & 1)res = mul(res,a,p);
b = b >> 1;
a = mul(a,a,p);
}
return res;
}
bool check(ll a,ll b,ll p)
{
if((b & 1) == 1)return true;
register ll t = power(a,(b >> 1),p);
if(t == 1ll)return check(a,(b >> 1),p);
else if(t == p - 1ll)return true;
else return false;
}
inline bool test(ll n)
{
if(n == 1ll)return false;
if(n == 2ll)return true;
if((n & 1) == 0)return false;
for(int i = 0;i < 12;++i)
{
if(n == prime[i])return true;
else if(power(prime[i],n - 1ll,n) != 1ll)return false;
else if(!check(prime[i],n - 1ll,n))return false;
}
return true;
}
ll p[40];
int tot = 0;
ll gcd(ll a,ll b){return (b == 0 ? a : gcd(b,a % b));}
inline ll rho(ll n, ll c)
{
ll x = rand() % n,y = x,t = 1;
for(int i = 1,k = 2;t == 1;++i)
{
x = (mul(x,x,n) + c) % n;
t = gcd(abs(x - y),n);
if(i == k)y = x,k <<= 1;
}
return t;
}
bool solve(ll n)
{
if(n == 1)return false;
if(test(n)){p[++tot] = n;return true;}
register ll t = n;
while(t == n)
{
t = rho(n,rand() % 5 + 1);
}
solve(t);
solve(n / t);
return false;
}
int main()
{
srand(time(NULL));
while(scanf("%lld",&n) && n != 0)
{
tot = 0;
memset(p,0,sizeof(p));
solve(n);
sort(p + 1,p + 1 + tot);
register int cnt = 1;
for(int i = 2;i <= tot + 1;++i)
{
if(p[i] != p[i - 1])
{
printf("%lld^%d ",p[i - 1],cnt);
cnt = 1;
}
else
{
++cnt;
}
}
puts("");
}
return 0;
}
In tag:
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡