卧薪尝胆,厚积薄发。
GSS8 Can you answer these queries VIII
Date: Mon Jun 11 11:02:52 CST 2018
In Category:
NoCategory
Description:
一个序列,
$Q$
次操作,插入,修改,删除,询问
$\begin{align}(\sum_{i=l}^{r}A[i]\times (i-l+1)^k\end{align}$
$mod$
$2^{32})$
。
$1\le N \le 100000$
$0\le k \le 10$
Solution:
$k\le 10$
,在
$splay$
中维护十一个值
$d[0]$
~
$d[10]$
,
$d[k]$
表示
$\begin{align}\sum_{i=rt_l}^{rt_r}A[i]\times (i-rt_l+1)^k\end{align}$
。
.左子树中的答案可以直接累加,根节点部分
$(i-l+1)^k=(siz_{lc}+1)^k$
,求幂直接加即可。
右子树部分
$A[rc]\times (i-l+1)^k=A[rc]\times (siz_{lc}+1+siz_{(rc_{lc})}+1)^k$
。
由二项式定理得
$A[rc]\times(siz_{lc}+1+siz_{(rc_{lc})}+1)^k$
$\begin{align}=A[rc]\times\sum_{i=0}^kC_k^i\times (siz_{lc}+1)^{k-i}\times (siz_{(rc_{lc})}+1)^i\end{align}$
$\begin{align}=\sum_{i=0}^kC_k^i\times(siz_{lc}+1)^{k-i}\times d_{rc}[i]\end{align}$
对于
$mod$
$2^{32}$
,
$unsigned$
$int$
自然溢出即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
char getc()
{
char c = getchar();
while(c < 'A' || c > 'Z')c = getchar();
return c;
}
int read()
{
int res = 0,f;
char c = getchar();
while((c < '0' || c > '9') && c != '-')c = getchar();
if(c == '-'){f = -1;c = getchar();}
else{f = 1;}
while('0' <= c && c <= '9')
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m;
#define MAXN 100010
#define MAXK 10
typedef unsigned int uint;
uint c[11][11];
void init()
{
c[0][0] = 1;
for(int i = 1;i <= MAXK;++i)
{
c[i][0] = 1;
for(int j = 1;j <= i;++j)
{
c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
}
}
return;
}
int a[MAXN];
struct node
{
int fa,c[2],siz;
uint d[11],v;
}t[MAXN << 1];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
void maintain(int rt)
{
int lc = t[rt].c[0],rc = t[rt].c[1];
t[rt].siz = t[lc].siz + t[rc].siz + 1;
for(int k = 0;k <= MAXK;++k)t[rt].d[k] = t[lc].d[k];
uint power = t[lc].siz + 1,cur = 1;
for(int k = 0;k <= MAXK;++k,cur *= power)t[rt].d[k] += t[rt].v * cur;
for(int k = 0;k <= MAXK;++k)
{
cur = 1;
for(int i = k;i >= 0;--i,cur *= power)
{
t[rt].d[k] += c[k][i] * cur * t[rc].d[i];
}
}
return;
}
void build(int &rt,int l,int r,int f)
{
if(l > r)return;
rt = newnode();
int mid = ((l + r) >> 1);
t[rt].v = (uint)a[mid];
t[rt].fa = f;
for(int i = 0;i <= MAXK;++i)t[rt].d[i] = (uint)a[mid];
build(t[rt].c[0],l,mid - 1,rt);
build(t[rt].c[1],mid + 1,r,rt);
maintain(rt);
return;
}
int id(int x){return (t[t[x].fa].c[0] == x ? 0 : 1);}
void connect(int x,int f,int p){t[x].fa = f;t[f].c[p] = x;return;}
void rotate(int x)
{
int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
connect(t[x].c[fx^1],y,fx);
connect(y,x,fx^1);
connect(x,z,fy);
maintain(y);maintain(x);
return;
}
void splay(int x,int &k)
{
int to = t[k].fa;
while(t[x].fa != to)
{
int y = t[x].fa;
if(t[y].fa == to){rotate(x);break;}
if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
k = x;
return;
}
int find_kth(int k)
{
int cur = root;
while(true)
{
if(k <= t[t[cur].c[0]].siz)cur = t[cur].c[0];
else if(k > t[t[cur].c[0]].siz + 1)
{
k -= t[t[cur].c[0]].siz + 1;
cur = t[cur].c[1];
}
else
{
return cur;
}
}
}
void remove(int x)
{
++x;
splay(find_kth(x - 1),root);
splay(find_kth(x + 1),t[root].c[1]);
t[t[root].c[1]].c[0] = 0;
maintain(t[root].c[1]);
maintain(root);
return;
}
void insert(int x,int v)
{
++x;
splay(find_kth(x - 1),root);
splay(find_kth(x),t[root].c[1]);
int k = newnode();
t[k].v = (uint)v;
for(int i = 0;i <= MAXK;++i)
{
t[k].d[i] = (uint)v;
}
connect(t[root].c[1],k,1);
connect(k,root,1);
maintain(k);maintain(root);
return;
}
void change(int x,int v)
{
++x;
splay(find_kth(x),root);
t[root].v = (uint)v;
for(int i = 0;i <= MAXK;++i)
{
t[root].d[i] = (uint)v;
}
maintain(root);
return;
}
uint query(int l,int r,int k)
{
++l;++r;
splay(find_kth(l - 1),root);
splay(find_kth(r + 1),t[root].c[1]);
return t[t[t[root].c[1]].c[0]].d[k];
}
int main()
{
init();
scanf("%d",&n);
for(int i = 1;i <= n;++i)
{
scanf("%d",&a[i]);
}
build(root,0,n + 1,0);
scanf("%d",&m);
char c;int x,y,z;
for(int i = 1;i <= m;++i)
{
c = getc();
if(c == 'I')
{
x = read();y = read();
++x;
insert(x,y);
}
if(c == 'D')
{
x = read();
++x;
remove(x);
}
if(c == 'R')
{
x = read();y = read();
++x;
change(x,y);
}
if(c == 'Q')
{
x = read();y = read();z = read();
++x,++y;
printf("%u\n",query(x,y,z));
}
}
return 0;
}
In tag:
数据结构-splay 数学-二项式定理
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡