卧薪尝胆,厚积薄发。
Qtree4
Date: Thu Dec 13 10:35:02 CST 2018
In Category:
NoCategory
Description:
一棵边带权的树,两种操作:取反节点x的颜色,询问树中最远的两个白色节点的距离。
$1\leqslant n\leqslant 10^5$
Solution:
考虑边分治,就是每次找到一条两边最大的子树最小的边,然后递归分治,这样可以建出一棵树形的结构,称之为边分树,对于每个节点维护两个堆,堆里存着子树中所有的点到这条边的距离还有来自哪个点,每个点再开一个容器存储他对他的所有祖先的贡献的值,某个节点的
$mx$
就是从两边的堆中各取一个的最大值和子树的
$mx$
取最大值,这样边分树根节点的
$mx$
就是整棵树的答案,修改时直接利用容器中存储的信息来更新祖先即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 200010
struct edge
{
int to,nxt,v;
}es[MAXN << 1],e[MAXN << 1];
int edgenums = 0,edgenum = 0;
int lins[MAXN],lin[MAXN];
void adds(int a,int b,int v)
{
es[edgenums] = (edge){b,lins[a],v};lins[a] = edgenums++;
es[edgenums] = (edge){a,lins[b],v};lins[b] = edgenums++;
return;
}
void add(int a,int b,int v)
{
e[edgenum] = (edge){b,lin[a],v};lin[a] = edgenum++;
e[edgenum] = (edge){a,lin[b],v};lin[b] = edgenum++;
return;
}
int col[MAXN];
void rebuild(int k,int fa)
{
int ff = 0;
for(int i = lins[k];i != -1;i = es[i].nxt)
{
if(es[i].to == fa)continue;
if(ff == 0)
{
add(k,es[i].to,es[i].v);
ff = k;
}
else
{
int t = ++n;col[t] = 1;
add(ff,t,0);add(t,es[i].to,es[i].v);
ff = t;
}
rebuild(es[i].to,k);
}
return;
}
bool del[MAXN << 1];
int siz[MAXN];
void calc_siz(int k,int fa)
{
siz[k] = 1;
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(del[i >> 1] || e[i].to == fa)continue;
calc_siz(e[i].to,k);
siz[k] += siz[e[i].to];
}
return;
}
int ct,ctsiz;
int sum;
void find_ct(int k,int fa)
{
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(del[i >> 1] || e[i].to == fa)continue;
find_ct(e[i].to,k);
int vsiz = max(siz[e[i].to],sum - siz[e[i].to]);
if(vsiz < ctsiz)
{
ct = i;
ctsiz = vsiz;
}
}
}
#define INF 0x3f3f3f3f
int cnt;
struct disdata
{
int k,d;
disdata(int k_ = 0,int d_ = 0){k = k_;d = d_;}
bool operator < (const disdata &k)const
{
return d < k.d;
}
};
priority_queue<disdata> s[MAXN][2];
struct nodedata
{
int bel,side,dis;
nodedata(int b_,int s_,int d_){bel = b_;side = s_;dis = d_;}
};
vector<nodedata> ndata[MAXN];
void calc_dis(int k,int fa,int d,int rt,int side)
{
if(col[k] == 0)
{
s[rt][side].push(disdata(k,d));
ndata[k].push_back(nodedata(rt,side,d));
}
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(del[i >> 1] || e[i].to == fa)continue;
calc_dis(e[i].to,k,d + e[i].v,rt,side);
}
return;
}
int mx[MAXN],lc[MAXN],rc[MAXN],ctw[MAXN];
void update(int k)
{
while(!s[k][0].empty() && col[s[k][0].top().k])s[k][0].pop();
while(!s[k][1].empty() && col[s[k][1].top().k])s[k][1].pop();
if(s[k][0].empty() || s[k][1].empty())mx[k] = 0;
else mx[k] = s[k][0].top().d + s[k][1].top().d + ctw[k];
if(lc[k] != 0)mx[k] = max(mx[k],mx[lc[k]]);
if(rc[k] != 0)mx[k] = max(mx[k],mx[rc[k]]);
return;
}
int divide(int k)
{
calc_siz(k,0);
ct = -1;ctsiz = INF;sum = siz[k];
find_ct(k,0);
if(ct == -1)return 0;
int x = e[ct].to,y = e[ct ^ 1].to;
del[ct >> 1] = true;
int t = ++cnt;ctw[t] = e[ct].v;
calc_dis(x,0,0,t,0);calc_dis(y,0,0,t,1);
lc[t] = divide(x);rc[t] = divide(y);
update(t);
return t;
}
void setwhite(int k)
{
for(int i = ndata[k].size() - 1;i >= 0;--i)
{
nodedata d = ndata[k][i];
s[d.bel][d.side].push(disdata(k,d.dis));
update(d.bel);
}
}
void setblack(int k)
{
for(int i = ndata[k].size() - 1;i >= 0;--i)
{
update(ndata[k][i].bel);
}
return;
}
char getc()
{
char c = getchar();
while(c != 'A' && c != 'C')c = getchar();
return c;
}
int main()
{
scanf("%d",&n);
int a,b,c;
memset(lin,-1,sizeof(lin));
memset(lins,-1,sizeof(lins));
for(int i = 1;i < n;++i)
{
scanf("%d%d%d",&a,&b,&c);
adds(a,b,c);
}
int white = n;
rebuild(1,0);
divide(1);
int q;
scanf("%d",&q);
char ch;
for(int i = 1;i <= q;++i)
{
ch = getc();
if(ch == 'A')
{
if(white == 0)puts("They have disappeared.");
else printf("%d\n",mx[1]);
}
else
{
scanf("%d",&a);
col[a] ^= 1;
if(col[a])setblack(a),--white;
else setwhite(a),++white;
}
}
return 0;
}
In tag:
树-边分治
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡