卧薪尝胆,厚积薄发。
GSS6 Can you answer these queries VI
Date: Mon Jun 11 07:30:33 CST 2018
In Category:
NoCategory
Description:
给出一个由 $N$ 个整数组成的序列 $A$ , $M$ 个操作:$I$ $p$ $x$ 在 $p$ 处插入插入一个元素 $x$>
$D$ $p$ 删除 $p$ 处的一个元素>
$R$ $p$ $x$ 修改 $p$ 处元素的值为 $x$>
$Q$ $l$ $r$ 查询一个区间 $[l,r]$ 的最大子段和
$1\le N,M\le 100000$
Solution:
和维修数列一题相似,用
$splay$
维护序列,注意由于没有加哨兵要判断一下边界,还要注意没有元素的情况(虽然本题保证序列不空)。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
inline char getc()
{
char c = getchar();
while(c < 'A' || c > 'Z')c = getchar();
return c;
}
inline int read()
{
char c = getchar();
int res = 0,f;
while((c < '0' || c > '9') && c != '-')c = getchar();
if(c == '-'){c = getchar();f = -1;}
else f = 1;
while('0' <= c && c <= '9')
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
#define MAXN 100010
int n,m;
struct node
{
int siz,fa,c[2],ls,rs,ms,s,v;
node(){ls = rs = s = 0;ms = -INF;}
}t[MAXN << 1];
int ptr = 0;
inline int newnode(){return ++ptr;}
int root;
int a[MAXN];
inline void maintain(int rt)
{
int lc = t[rt].c[0],rc = t[rt].c[1];
t[rt].siz = t[lc].siz + t[rc].siz + 1;
t[rt].s = t[lc].s + t[rc].s + t[rt].v;
t[rt].ls = max(t[lc].ls,t[lc].s + t[rt].v + t[rc].ls);
t[rt].rs = max(t[rc].rs,t[rc].s + t[rt].v + t[lc].rs);
t[rt].ms = max(max(t[lc].ms,t[rc].ms),t[lc].rs + t[rt].v + t[rc].ls);
return;
}
void build(int &rt,int l,int r,int f)
{
if(l > r)return;
rt = newnode();
t[rt].fa = f;
int mid = ((l + r) >> 1);
t[rt].v = a[mid];
build(t[rt].c[0],l,mid - 1,rt);
build(t[rt].c[1],mid + 1,r,rt);
maintain(rt);
return;
}
inline int id(int x){return (t[t[x].fa].c[0] == x ? 0 : 1);}
inline void connect(int x,int f,int p){t[x].fa = f;t[f].c[p] = x;return;}
inline void rotate(int x)
{
int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
connect(t[x].c[fx^1],y,fx);
connect(y,x,fx^1);
connect(x,z,fy);
maintain(y);maintain(x);
return;
}
inline void splay(int x,int &k)
{
int to = t[k].fa;
while(t[x].fa != to)
{
int y = t[x].fa;
if(t[y].fa == to){rotate(x);break;}
if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
k = x;
return;
}
inline int find(int x)
{
register int cur = root;
int ls;
while(true)
{
if(t[cur].c[0] != 0)ls = t[t[cur].c[0]].siz;
else ls = 0;
if(x <= ls)cur = t[cur].c[0];
else if(x > ls + 1){cur = t[cur].c[1];x -= ls + 1;}
else
{
return cur;
}
}
}
inline void insert(int p,int v)
{
if(p == 1)
{
int k = newnode();
t[k].v = v;
connect(root,k,1);
maintain(k);
root = k;
return;
}
p = find(p - 1);
splay(p,root);
int k = newnode();
connect(t[root].c[1],k,1);
connect(k,root,1);
t[k].v = v;
maintain(k);
maintain(root);
return;
}
inline void remove(int p)
{
if(p == 1)
{
splay(find(1),root);
t[t[root].c[1]].fa = 0;
root = t[root].c[1];
return;
}
splay(find(p - 1),root);
splay(find(p),t[root].c[1]);
connect(t[t[root].c[1]].c[1],root,1);
maintain(root);
return;
}
inline void change(int p,int k)
{
splay(find(p),root);
t[root].v = k;
maintain(root);
return;
}
inline int query(int a,int b)
{
if(a == 1 && b == n)
{
return t[root].ms;
}
if(a == 1 && b != n)
{
splay(find(b + 1),root);
return t[t[root].c[0]].ms;
}
if(a != 1 && b == n)
{
splay(find(a - 1),root);
return t[t[root].c[1]].ms;
}
splay(find(a - 1),root);
splay(find(b + 1),t[root].c[1]);
return t[t[t[root].c[1]].c[0]].ms;
}
int main()
{
scanf("%d",&n);
for(register int i = 1;i <= n;++i)
{
a[i] = read();
}
build(root,1,n,0);
scanf("%d",&m);
char opt;
int x,y;
for(register int i = 1;i <= m;++i)
{
opt = getc();
if(opt == 'I')
{
x = read();y = read();
++n;
insert(x,y);
}
if(opt == 'D')
{
x = read();
--n;
remove(x);
}
if(opt == 'R')
{
x = read();y = read();
change(x,y);
}
if(opt == 'Q')
{
x = read();y = read();
printf("%d\n",query(x,y));
}
}
return 0;
}
In tag:
数据结构-splay
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡