卧薪尝胆,厚积薄发。
JSOI2008 最小生成树计数
Date: Sun Jul 01 22:09:08 CST 2018
In Category:
NoCategory
Description:
给一个无向带权简单图,相同边权的边数不超过
$10$
条,求不同的最小生成树个数。
$1\le N \le 100$
$1\le M \le 1000$
Solution:
将边按边权排序,最小生成树一定是替换了某些权值相同的边得到其他最小生成树,对于边权相同的一个块,块内边的顺序不影响最后的连通性,将原来不连通经过这个块后联通的一个联通块提出来做矩阵树定理,最后乘法原理乘起来即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 110
#define MAXM 1010
#define MOD 31011
struct edge
{
int u,v,w;
}e[MAXM];
bool cmp(edge a,edge b){return a.w < b.w;}
struct block
{
int l,r,v;
}b[MAXM];
int cnt = 0;
int f[MAXN];
int find(int x){return (x == f[x] ? x : find(f[x]));}
int scc[MAXN];
int ins(int x){return (x == scc[x] ? x : scc[x] = ins(scc[x]));}
int g[MAXN][MAXN];
int matrixtree(int n)
{
int res = 1,tag = 1;
--n;
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= n;++j)
{
g[i][j] = (g[i][j] % MOD + MOD) % MOD;
}
}
for(int i = 1;i <= n;++i)
{
for(int j = i + 1;j <= n;++j)
{
int a = g[i][i],b = g[j][i];
while(b)
{
int div = a / b;
for(int k = i;k <= n;++k)
{
g[i][k] = (g[i][k] - g[j][k] * div % MOD + MOD) % MOD;
swap(g[i][k],g[j][k]);
}
a = a % b;swap(a,b);tag = -tag;
}
}
res = res * g[i][i] % MOD;
}
if(tag == -1)res = (MOD - res) % MOD;
return res;
}
int v[MAXN][MAXN];
bool vis[MAXN];
int to[MAXN],tot = 0;
int tr[MAXN];
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
{
f[i] = i;
scc[i] = i;
}
for(int i = 1;i <= m;++i)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
}
sort(e + 1,e + 1 + m,cmp);
for(int i = 1;i <= m;++i)
{
if(e[i].w != e[i - 1].w)
{
b[++cnt].l = i;
b[cnt - 1].r = i - 1;
b[cnt].v = e[i].w;
}
}
b[cnt].r = m;
long long ans = 1;
for(int i = 1;i <= cnt;++i)
{
for(int j = b[i].l;j <= b[i].r;++j)
{
register int p = ins(e[j].u),q = ins(e[j].v);
if(p != q)
{
scc[p] = q;
}
}
for(int j = 1;j <= n;++j)
{
v[j][0] = 0;
}
memset(vis,0,sizeof(vis));
memset(to,0,sizeof(to));
for(int j = b[i].l;j <= b[i].r;++j)
{
if(find(e[j].u) == find(e[j].v))continue;
if(vis[ins(e[j].u)])
{
v[to[ins(e[j].u)]][++v[to[ins(e[j].u)]][0]] = j;
}
else
{
vis[ins(e[j].u)] = true;
to[ins(e[j].u)] = ++tot;
v[tot][++v[tot][0]] = j;
}
}
for(int k = 1;k <= tot;++k)
{
memset(g,0,sizeof(g));
memset(tr,0,sizeof(tr));
int vcnt = 0;
for(int p = 1;p <= v[k][0];++p)
{
if(tr[find(e[v[k][p]].u)] == 0)tr[find(e[v[k][p]].u)] = ++vcnt;
if(tr[find(e[v[k][p]].v)] == 0)tr[find(e[v[k][p]].v)] = ++vcnt;
g[tr[find(e[v[k][p]].u)]][tr[find(e[v[k][p]].u)]] += 1;g[tr[find(e[v[k][p]].v)]][tr[find(e[v[k][p]].v)]] += 1;
g[tr[find(e[v[k][p]].u)]][tr[find(e[v[k][p]].v)]] -= 1;g[tr[find(e[v[k][p]].v)]][tr[find(e[v[k][p]].u)]] -= 1;
}
ans = ans * matrixtree(vcnt) % MOD;
}
for(int i = 1;i <= n;++i)
{
f[i] = scc[i];
}
}
int root = ins(1);
for(int i = 1;i <= n;++i)
{
if(ins(i) != root)
{
cout << 0 << endl;
return 0;
}
}
cout << ans << endl;
return 0;
}
In tag:
图论-kruskal 图论-矩阵树定理
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡