卧薪尝胆,厚积薄发。
ZJOI2007 捉迷藏
Date: Sat Aug 04 19:40:41 CST 2018
In Category:
NoCategory
Description:
一棵树上有黑点和白点,支持反转某个点的颜色和询问最长的两个白点的距离。
$1\le n \le 200000$
Solution:
动态点分治,先把点分树建出来,然后每个节点维护两个堆,第一个堆维护这个点在点分树上的子节点到点分树上的父亲的值,第二个堆维护这个点的子树中的节点到他的值,第一个堆就是儿子节点的第二个堆的堆顶组成的,每次反转某个染色时不断在点分树上跳父亲并修改这两个堆,还要维护一个全局的堆记录最长距离,就是各个点的第二个堆最大和次大之和组成的,查询时直接返回堆顶。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 100010
int n,m;
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
++edgenum;e[edgenum].to = b;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
struct heap
{
priority_queue<int> add,del;
void push(int x){add.push(x);}
void erase(int x){del.push(x);}
void pop()
{
while(!del.empty() && add.top() == del.top())
add.pop(),del.pop();
add.pop();
return;
}
int fi()
{
while(!del.empty() && add.top() == del.top())
add.pop(),del.pop();
if(add.empty())return 0;
return add.top();
}
int siz(){return add.size() - del.size();}
int se()
{
if(siz() < 2)return 0;
int x = fi();pop();
int y = fi();push(x);
return y;
}
}qa,qb[MAXN],qc[MAXN];
int top[MAXN],dep[MAXN],fu[MAXN],siz[MAXN],son[MAXN];
void dfs1(int k,int depth)
{
dep[k] = depth;
siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fu[k])
{
fu[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])
{
son[k] = e[i].to;
}
}
}
return;
}
void dfs2(int k,int tp)
{
top[k] = tp;
if(son[k] == 0)return;
dfs2(son[k],tp);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != son[k] && e[i].to != fu[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fu[top[a]];
}
return dep[a] < dep[b] ? a : b;
}
int dis(int x,int y){return dep[x] + dep[y] - 2 * dep[LCA(x,y)];}
int size[MAXN],d[MAXN],s,root;
bool v[MAXN];
void getroot(int k,int fa)
{
size[k] = 1;d[k] = 0;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa && !v[e[i].to])
{
getroot(e[i].to,k);
size[k] += size[e[i].to];
d[k] = max(d[k],size[e[i].to]);
}
}
d[k] = max(d[k],s - size[k]);
if(d[k] < d[root])root = k;
return;
}
int fa[MAXN];
void divide(int k,int f)
{
fa[k] = f;v[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(!v[e[i].to])
{
s = size[e[i].to];root = 0;
getroot(e[i].to,k);
divide(root,k);
}
}
return;
}
void turn_off(int u,int v)
{
if(u == v)
{
qb[u].push(0);
if(qb[u].siz() == 2)qa.push(qb[u].fi());
}
if(!fa[u])return;
int f = fa[u],d = dis(f,v),tmp = qc[u].fi();
qc[u].push(d);
if(d > tmp)
{
int mx = qb[f].fi() + qb[f].se(),size = qb[f].siz();
if(tmp)qb[f].erase(tmp);
qb[f].push(d);
int now = qb[f].fi() + qb[f].se();
if(now > mx)
{
if(size >= 2)qa.erase(mx);
if(qb[f].siz() >= 2)qa.push(now);
}
}
turn_off(f,v);
return;
}
void turn_on(int u,int v)
{
if(u == v)
{
if(qb[u].siz() == 2)qa.erase(qb[u].fi());
qb[u].erase(0);
}
if(!fa[u])return;
int f = fa[u],d = dis(f,v),tmp = qc[u].fi();
qc[u].erase(d);
if(d == tmp)
{
int mx = qb[f].fi() + qb[f].se(),size = qb[f].siz();
qb[f].erase(d);
if(qc[u].fi())qb[f].push(qc[u].fi());
int now = qb[f].fi() + qb[f].se();
if(now < mx)
{
if(size >= 2)qa.erase(mx);
if(qb[f].siz() >= 2)qa.push(now);
}
}
turn_on(f,v);
return;
}
inline char getc()
{
register char c = getchar();
while(c != 'G' && c != 'C')c = getchar();
return c;
}
int state[MAXN];
int main()
{
scanf("%d",&n);
int a,b;
for(int i = 1;i < n;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
dfs1(1,1);dfs2(1,1);
root = 0;d[0] = INF;s = n;
getroot(1,0);
divide(root,0);
for(int i = 1;i <= n;++i)qc[i].push(0);
int tot = 0;
for(int i = 1;i <= n;++i)
{
state[i] = 1;
turn_off(i,i);
++tot;
}
scanf("%d",&m);
char c;int k;
for(int i = 1;i <= m;++i)
{
c = getc();
if(c == 'G')
{
if(tot <= 1)printf("%d\n",tot - 1);
else printf("%d\n",qa.fi());
}
else
{
scanf("%d",&k);
if(state[k]){turn_on(k,k);--tot;}
else{turn_off(k,k);++tot;}
state[k] ^= 1;
}
}
return 0;
}
In tag:
树-动态点分治
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡