卧薪尝胆,厚积薄发。
POI2007 ZAP-Queries
Date: Tue Jul 03 19:23:55 CST 2018
In Category:
NoCategory
Description:
求
$\begin{align}\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=d]\end{align}$
$1\le T \le 50000$
$1\le d \le a,b \le 50000$
Solution:
$\begin{align}\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=d]\end{align}$
$=\begin{align}\sum_{i=1}^{\lfloor\frac a d\rfloor}\sum_{j=1}^{\lfloor\frac b d\rfloor}\varepsilon(gcd(i,j))\end{align}$
$=\begin{align}\sum_{i=1}^{\lfloor\frac a d\rfloor}\sum_{j=1}^{\lfloor\frac b d\rfloor}\sum_{d|gcd(i,j)}\mu(d)\end{align}$
设
$n=\lfloor\frac a d\rfloor$
,
$m=\lfloor\frac b d\rfloor$
,交换求和号,得:
$\begin{align}原式=\sum\mu(d)\lfloor\frac n d\rfloor\lfloor\frac m d\rfloor\end{align}$
预处理
$\mu$
前缀和
$+$
除法分块求和即可
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int testcases;
#define MAXN 500010
int prime[MAXN],tot = 0;
bool isprime[MAXN + 1];
typedef long long ll;
ll mu[MAXN],sum[MAXN];
void init()
{
for(int i = 2;i <= MAXN;++i)isprime[i] = true;
mu[1] = 1;
for(int i = 2;i <= MAXN;++i)
{
if(isprime[i])
{
prime[++tot] = i;
mu[i] = -1;
}
for(int j = 1;j <= tot && i * prime[j] <= MAXN;++j)
{
isprime[i * prime[j]] = false;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else
{
mu[i * prime[j]] = -1 * mu[i];
}
}
}
for(int i = 1;i <= MAXN;++i)
{
sum[i] = sum[i - 1] + mu[i];
}
return;
}
int a,b,d;
ll calc(int n,int m)
{
ll res = 0;
if(n > m)swap(n,m);
for(int l = 1,r = 0;l <= n;l = r + 1)
{
r = min(n / (n / l),m / (m / l));
res += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
}
return res;
}
int main()
{
init();
scanf("%d",&testcases);
for(int i = 1;i <= testcases;++i)
{
scanf("%d%d%d",&a,&b,&d);
printf("%lld\n",calc(a / d,b / d));
}
return 0;
}
In tag:
数学-莫比乌斯反演
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡