卧薪尝胆,厚积薄发。
POI2009 WSP-Island
Date: Mon Dec 10 09:13:02 CST 2018
In Category:
NoCategory
Description:
一个凸多边形,点按顺序标号为
$1\sim n$
,给出每个点的坐标,任意两点间都有连线,可以在连线的交点处拐弯,有一些边被封锁,问从
$1$
到
$n$
的最短距离。
$1\leqslant n\leqslant 10^5$
Solution:
观察一下性质会发现对于一个点,一定是往比他编号大的点走,那么实际有用的路就只有
$O(n)$
个了,然后又会发现对于一条可以走的路,他的另一边一定不会被走过,于是这就可以看成很多半平面的半平面交问题,加入半平面
$1\sim n$
,最后求剩下那个多边形的周长就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 100010
vector<int> g[MAXN];
struct point
{
double x,y;
}p[MAXN];
point operator + (point a,point b){return (point){a.x + b.x,a.y + b.y};}
point operator - (point a,point b){return (point){a.x - b.x,a.y - b.y};}
point operator * (point a,double k){return (point){a.x * k,a.y * k};}
double cross(point a,point b){return (a.x * b.y - a.y * b.x);}
double angle(point k){return atan2(k.y,k.x);}
struct plane
{
point p,v;
}pl[MAXN],q[MAXN];
const double eps = 1e-8;
bool equal(double a,double b){return (fabs(a - b) <= eps);}
int sign(double k){return (equal(k,0.0) ? 0 : (k < 0 ? -1 : 1));}
bool in(point p,plane k){return (sign(cross(p - k.p,k.v)) >= 0);}
point intersection(plane a,plane b){return b.p + b.v * (cross(a.v,a.p - b.p) / cross(a.v,b.v));}
bool cmp(plane a,plane b){return angle(a.v) < angle(b.v);}
int head,tail;
double dis(point a,point b){return sqrt((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y));}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
}
int a,b;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&a,&b);
g[a].push_back(b);g[b].push_back(a);
}
int pltot = 0;
for(int i = 1;i <= n;++i)
{
sort(g[i].begin(),g[i].end());
int j,cur;
for(j = n,cur = g[i].size() - 1;j > i;--j)
{
if(j == g[i][cur])--cur;
else break;
}
if(j <= i)continue;
pl[++pltot] = (plane){p[i],p[j] - p[i]};
}
pl[++pltot] = (plane){p[1],p[1] - p[n]};
sort(pl + 1,pl + 1 + pltot,cmp);
int tot = 0;
for(int i = 1;i <= pltot;++i)
{
if(tot == 0)pl[++tot] = pl[i];
else if(!equal(angle(pl[tot].v),angle(pl[i].v)))pl[++tot] = pl[i];
else if(!in(pl[tot].p,pl[i]))pl[tot] = pl[i];
}
q[head = 1] = pl[1];q[tail = 2] = pl[2];
for(int i = 3;i <= tot;++i)
{
while(head < tail && !in(intersection(q[tail],q[tail - 1]),pl[i]))--tail;
while(head < tail && !in(intersection(q[head],q[head + 1]),pl[i]))++head;
q[++tail] = pl[i];
}
while(head < tail && !in(intersection(q[tail],q[tail - 1]),q[head]))--tail;
double ans = 0.0;
for(int i = head;i <= tail - 2;++i)
{
ans += dis(intersection(q[i],q[i + 1]),intersection(q[i + 1],q[i + 2]));
}
ans += dis(intersection(q[tail],q[head]),intersection(q[head],q[head + 1]));
ans += dis(intersection(q[head],q[tail]),intersection(q[tail],q[tail - 1]));
ans -= dis(p[1],p[n]);
printf("%.8lf\n",ans);
return 0;
}
In tag:
数学-计算几何-半平面交
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡