卧薪尝胆,厚积薄发。
CTSC2008 网络管理
Date: Sat Jun 02 21:24:49 CST 2018
In Category:
NoCategory
Description:
树上带修改链上第
$K$
大。
$1\le N,Q\le 80000$
Solution:
先把树剖成链,在链上建树状数组套主席树,计算时很显然由树上查分得
$a+b-lca-fa[lca]$
,然后就是主席树统计区间第
$K$
大的二分方法,先把所有树的树根放到数组里然后依次处理。对于修改操作,在查询时只有他的子树会受影响,可以在
$DFS$
序上查分,在
$L$
处对应位置插入
$1$
,在
$R+1$
处对应位置插入
$-1$
,这样前缀和即是这个点到根的路径,利用树状数组统计前缀和即可实现修改。时间复杂度
$O(Nlog^2N)$
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
int n,m;
#define MAXN 80010
#define HASH 3007
struct HASH_MAP
{
int lin[HASH],nxt[MAXN << 2],dat[MAXN << 2],f[MAXN << 2],siz;
HASH_MAP(){siz = 0;memset(lin,0,sizeof(lin));}
int& operator [](int x)
{
int hsh = x % HASH;
for(int i = lin[hsh];i != 0;i = nxt[i])
{
if(dat[i] == x)
{
return f[i];
}
}
++siz;dat[siz] = x;nxt[siz] = lin[hsh];lin[hsh] = siz;
return f[siz];
}
}tr;
int tim[MAXN];
inline int read()
{
int res = 0;
char c = getchar();
bool f;
while((c < '0' || c > '9') && c != '-')c = getchar();
if(c == '-'){f = true;c = getchar();}
else{f = false;}
while('0' <= c && c <= '9')
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return (!f ? res : -res);
}
struct edge
{
int to,nxt;
}e[MAXN << 1];
int lin[MAXN] = {0},edgenum = 0;
inline void add(int a,int b)
{
++edgenum;
e[edgenum].to = b;
e[edgenum].nxt = lin[a];
lin[a] = edgenum;
return;
}
struct query
{
int k,a,b;
}q[MAXN];
int b[MAXN << 1],to[MAXN << 1],tot = 0,cnt = 0;
inline void init()
{
n = read();m = read();
for(register int i = 1;i <= n;++i)
{
tim[i] = read();
b[++cnt] = tim[i];
}
int x,y;
for(register int i = 1;i < n;++i)
{
x = read();y = read();
add(x,y);add(y,x);
}
for(register int i = 1;i <= m;++i)
{
q[i].k = read();q[i].a = read();q[i].b = read();
if(q[i].k == 0)b[++cnt] = q[i].b;
}
sort(b + 1,b + 1 + cnt);
b[0] = -INF;
for(register int i = 1;i <= cnt;++i)
{
if(b[i] != b[i - 1])
{
tr[b[i]] = ++tot;
to[tot] = b[i];
}
}
return;
}
int top[MAXN],siz[MAXN],fa[MAXN],dep[MAXN],son[MAXN],rank[MAXN],th[MAXN],totn = 0;
void dfs1(int k,int depth)
{
siz[k] = 1;
dep[k] = depth;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k])
{
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[son[k]] < siz[e[i].to])
{
son[k] = e[i].to;
}
}
}
return;
}
void dfs2(int k,int tp)
{
rank[k] = ++totn;th[totn] = k;
top[k] = tp;
if(son[k] == 0)return;
dfs2(son[k],tp);
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
inline int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fa[top[a]];
}
if(dep[a] < dep[b])return a;
else return b;
}
struct node
{
int c[2],sum;
node(){c[0] = c[1] = sum = 0;}
}t[MAXN * 400];
int ptr = 0;
inline int newnode(){return ++ptr;}
inline int lowbit(int x){return x & (-x);}
int root[MAXN];
int root_[5][MAXN];
inline void get1(int p,int *root_)
{
root_[0] = 0;
if(p == 0)return;
for(register int i = p;i >= 1;i -= lowbit(i))root_[++root_[0]] = root[i];
return;
}
inline void get2(int p,int *root_)
{
root_[0] = 0;
if(p == 0)return;
for(register int i = p;i <= n;i += lowbit(i))root_[++root_[0]] = root[i];
return;
}
void insert(int &rt,int p,int k,int l,int r)
{
if(rt == 0)rt = newnode();
t[rt].sum += k;
if(l == r)return;
int mid = ((l + r) >> 1);
if(p <= mid)insert(t[rt].c[0],p,k,l,mid);
else insert(t[rt].c[1],p,k,mid + 1,r);
return;
}
inline void buildtree()
{
for(register int i = 1;i <= n;++i)root[i] = newnode();
for(register int i = 1;i <= n;++i)
{
get2(rank[i],root_[0]);
for(register int k = 1;k <= root_[0][0];++k)insert(root_[0][k],tr[tim[i]],1,1,tot);
get2(rank[i] + siz[i],root_[0]);
for(register int k = 1;k <= root_[0][0];++k)insert(root_[0][k],tr[tim[i]],-1,1,tot);
}
return;
}
inline void work()
{
for(register int i = 1;i <= m;++i)
{
if(q[i].k != 0)
{
int lca = LCA(q[i].a,q[i].b);
q[i].k = dep[q[i].a] - dep[lca] + dep[q[i].b] - dep[lca] + 1 - q[i].k + 1;
if(q[i].k <= 0)
{
puts("invalid request!");
continue;
}
get1(rank[q[i].a],root_[1]);get1(rank[q[i].b],root_[2]);get1(rank[lca],root_[3]);get1(rank[fa[lca]],root_[4]);
int l = 1,r = tot,res,nxt;
while(l < r)
{
res = 0;
for(register int k = 1;k <= root_[1][0];++k)if(t[root_[1][k]].c[0] != 0)res += t[t[root_[1][k]].c[0]].sum;
for(register int k = 1;k <= root_[2][0];++k)if(t[root_[2][k]].c[0] != 0)res += t[t[root_[2][k]].c[0]].sum;
for(register int k = 1;k <= root_[3][0];++k)if(t[root_[3][k]].c[0] != 0)res -= t[t[root_[3][k]].c[0]].sum;
for(register int k = 1;k <= root_[4][0];++k)if(t[root_[4][k]].c[0] != 0)res -= t[t[root_[4][k]].c[0]].sum;
if(q[i].k <= res)
{
nxt = 0;
r = ((l + r) >> 1);
}
else
{
nxt = 1;
l = ((l + r) >> 1) + 1;
q[i].k -= res;
}
for(register int k = 1;k <= root_[1][0];++k)if(root_[1][k] != 0)root_[1][k] = t[root_[1][k]].c[nxt];
for(register int k = 1;k <= root_[2][0];++k)if(root_[2][k] != 0)root_[2][k] = t[root_[2][k]].c[nxt];
for(register int k = 1;k <= root_[3][0];++k)if(root_[3][k] != 0)root_[3][k] = t[root_[3][k]].c[nxt];
for(register int k = 1;k <= root_[4][0];++k)if(root_[4][k] != 0)root_[4][k] = t[root_[4][k]].c[nxt];
}
printf("%lld\n",to[l]);
}
else
{
get2(rank[q[i].a],root_[0]);
for(register int k = 1;k <= root_[0][0];++k)insert(root_[0][k],tr[tim[q[i].a]],-1,1,tot);
for(register int k = 1;k <= root_[0][0];++k)insert(root_[0][k],tr[q[i].b],1,1,tot);
get2(rank[q[i].a] + siz[q[i].a],root_[0]);
for(register int k = 1;k <= root_[0][0];++k)insert(root_[0][k],tr[tim[q[i].a]],1,1,tot);
for(register int k = 1;k <= root_[0][0];++k)insert(root_[0][k],tr[q[i].b],-1,1,tot);
tim[q[i].a] = q[i].b;
}
}
return;
}
int main()
{
init();
dfs1(1,1);
dfs2(1,1);
buildtree();
work();
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡