卧薪尝胆,厚积薄发。
Exca王者之剑
Date: Sun Mar 24 21:35:47 CST 2019
In Category:
NoCategory
Description:
$n\times m$
网格,每个格子有一个价值为
$v_{i,j}$
,可以自己决定起点,第
$i$
秒开始时可以拿走一个宝石,偶数秒的时候周围四格的宝石消失,第
$i$
秒结束的时候可以移动,可以不动,问最多能拿到多大总价值的宝石。
$1\leqslant n,m\leqslant 100$
Solution:
就算知道了这题是网络流我也想不到,如果仔细观察一下的话会发现其实是可以选一些格子,如果某个格子选了周围四个就不能选了,因为可以不动代表可以去掉奇偶秒数的影响随意选择消除。
然后最小割就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,m;
#define MAXN 410
int v[MAXN][MAXN];
#define MAXP (MAXN * MAXN)
#define MAXE (MAXN * MAXN * 2 + MAXN * MAXN * 4)
struct edge
{
int to,nxt,f;
}e[MAXE << 1];
int edgenum = 0;
int lin[MAXP] = {0};
void add(int a,int b,int f)
{//cout << a << " " << b << " " << f << endl;
e[edgenum] = (edge){b,lin[a],f};lin[a] = edgenum++;
e[edgenum] = (edge){a,lin[b],0};lin[b] = edgenum++;
return;
}
int S,T;
int s,t;
#define INF 0x3f3f3f3f
int p[MAXN];
int ch[MAXP];
bool BFS()
{
memset(ch,-1,sizeof(ch));ch[s] = 0;
queue<int> q;q.push(s);
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(ch[e[i].to] == -1 && e[i].f)
{
ch[e[i].to] = ch[k] + 1;
q.push(e[i].to);
}
}
}
return (ch[t] != -1);
}
int flow(int k,int f)
{
if(k == t)return f;
int r = 0;
for(int i = lin[k];i != -1 && f > r;i = e[i].nxt)
{
if(ch[e[i].to] == ch[k] + 1 && e[i].f)
{
int l = flow(e[i].to,min(e[i].f,f - r));
e[i].f -= l;r += l;e[i ^ 1].f += l;
}
}
if(r == 0)ch[k] = -1;
return r;
}
typedef long long ll;
ll dinic()
{
ll ans = 0,r;
while(BFS())while(r = flow(s,INF))ans += r;
return ans;
}
int id(int i,int j){return (i - 1) * m + j;}
int mx[4] = {0,0,1,-1};
int my[4] = {1,-1,0,0};
int main()
{
memset(lin,-1,sizeof(lin));
scanf("%d%d",&n,&m);
ll sum = 0;
for(int i = 1;i <= n;++i)for(int j = 1;j <= m;++j)v[i][j] = rd();
for(int i = 1;i <= n;++i)for(int j = 1;j <= m;++j)sum += v[i][j];
s = n * m + 1;t = s + 1;
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= m;++j)
{
if((i + j) % 2 == 0)
{
add(s,id(i,j),v[i][j]);
for(int k = 0;k < 4;++k)
{
int nx = i + mx[k],ny = j + my[k];
if(1 <= nx && nx <= n && 1 <= ny && ny <= m)
{
add(id(i,j),id(nx,ny),INF);
}
}
}
else
{
add(id(i,j),t,v[i][j]);
}
}
}
cout << sum - dinic() << endl;
return 0;
}
In tag:
图论-网络流-最小割
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡