卧薪尝胆,厚积薄发。
HNOI2009 图的同构记数
Date: Fri Dec 14 17:02:37 CST 2018
In Category:
NoCategory
Description:
求
$n$
个点的本质不同(不能通过点的轮换重合)的图的个数。
$1\leqslant n\leqslant 60$
Solution:
把有边看成
$1$
,每边看成
$0$
,就和[[SHOI2006]有色图](https://www.luogu.org/problemnew/show/P4128)一样了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
typedef long long ll;
ll n;
ll ans = 0;
#define MAXN 65
ll fac[MAXN];
const ll p = 997;
const ll c = 2;
#define MOD 1000
ll inver[MOD];
inline ll power(ll a,ll b)
{
register ll res = 1;
while(b > 0)
{
if(b & 1)res = res * a % p;
a = a * a % p;
b = b >> 1;
}
return res;
}
ll cnt[MAXN];
ll gcd(ll a,ll b){return (b == 0 ? a : gcd(b,a % b));}
ll l[MAXN];
ll pow2[MOD];
ll g[MAXN][MAXN];
inline ll calc(ll x)
{
register ll m = 0;
for(register int i = 1;i <= x;++i)m = (m + l[i] / 2) % (p - 1);
for(register int i = 1;i < x;++i)for(register int j = i + 1;j <= x;++j)m = (m + g[l[i]][l[j]]) % (p - 1);
register ll s = 1;
for(register int i = 1;i <= x;++i)s = s * l[i] % p;
s %= p;
for(register int i = 1;i <= n;++i)s = s * fac[cnt[i]] % p;
return inver[s] * pow2[m] % p;
}
void dfs(ll cur,ll rem,ll low)
{
if(rem == 0)
{
ans = (ans + calc(cur - 1)) % p;
return;
}
for(register ll i = low;i <= rem;++i)
{
++cnt[i];l[cur] = i;
dfs(cur + 1,rem - i,i);
--cnt[i];
}
return;
}
int main()
{
scanf("%lld",&n);
inver[1] = 1;for(int i = 2;i < MOD;++i)inver[i] = (p - p / i) * inver[p % i] % p;
fac[0] = 1;for(register int i = 1;i <= n;++i)fac[i] = fac[i - 1] * i % p;
pow2[0] = 1;for(int i = 1;i < MOD;++i)pow2[i] = pow2[i - 1] * 2 % p;
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)g[i][j] = gcd(i,j);
dfs(1,n,1);
cout << ans << endl;
return 0;
}
In tag:
数学-polya定理
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡