卧薪尝胆,厚积薄发。
POI2006 PRO-Professor Szu
Date: Mon Oct 15 19:16:47 CST 2018
In Category:
NoCategory
Description:
$n$
个别墅以及一个主楼,询问从某个别墅走到主楼最多的不同方式是多少,以及有多少个别墅有这么多方式,输出别墅编号。如果最多不同方式超过了
$36500$
那么都视作
$zawsze$
。
$1\leqslant n\leqslant 10^6$
Solution:
先
$tarjan$
求一下强连通分量,反向建图,如果有一个大小大于
$1$
的强连通分量能到主楼那么一定是
$zawsze$
,如果没有,就在
$DAG$
上递推路径条数最后判一下就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m;
#define MAXN 1000010
struct edge
{
int to,nxt;
}e[MAXN];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
++edgenum;e[edgenum].to = b;e[edgenum].nxt = lin[a];lin[a] = edgenum;
return;
}
int dfn[MAXN],low[MAXN],tot = 0;
stack<int> s;
bool v[MAXN];
int ins[MAXN],scc = 0;
int siz[MAXN];
void tarjan(int k)
{
dfn[k] = low[k] = ++tot;
s.push(k);v[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(dfn[e[i].to] == 0)
{
tarjan(e[i].to);
low[k] = min(low[k],low[e[i].to]);
}
else if(v[e[i].to])low[k] = min(low[k],dfn[e[i].to]);
}
if(dfn[k] == low[k])
{
++scc;
int t;
do
{
t = s.top();s.pop();
ins[t] = scc;v[t] = false;
++siz[scc];
}while(t != k);
}
return;
}
vector<int> g[MAXN];
bool tag = false;
int ind[MAXN];
#define INF 0x3f3f3f3f
bool type[MAXN];
int f[MAXN];
int main()
{
scanf("%d%d",&n,&m);++n;
int a,b;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i = 1;i <= n;++i)
if(dfn[i] == 0)tarjan(i);
for(int i = 1;i <= scc;++i)
{
if(siz[i] > 1)type[i] = true;
else type[i] = false;
}
for(int k = 1;k <= n;++k)
{
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(ins[k] != ins[e[i].to])
{
g[ins[e[i].to]].push_back(ins[k]);
++ind[ins[k]];
}
else if(k == e[i].to)type[ins[k]] = true;
}
}
f[ins[n]] = 1;
queue<int> q;
for(int i = 1;i <= scc;++i)
{
if(ind[i] == 0)q.push(i);
}
while(!q.empty())
{
int k = q.front();q.pop();tag |= type[k];
for(vector<int>::iterator it = g[k].begin();it != g[k].end();++it)
{
--ind[*it];
type[*it] |= type[k];
f[*it] = min(36501,f[*it] + f[k]);
if(ind[*it] == 0)q.push(*it);
}
}
if(tag)
{
cout << "zawsze" << endl;
int ans = 0;
for(int i = 1;i <= n - 1;++i)
if((type[ins[i]] && f[ins[i]] != 0) || f[ins[i]] > 36500)++ans;
cout << ans << endl;
for(int i = 1;i <= n - 1;++i)
if((type[ins[i]] && f[ins[i]] != 0) || f[ins[i]] > 36500)printf("%d ",i);
cout << endl;
}
else
{
int maxf = 0;
for(int i = 1;i <= scc;++i)maxf = max(maxf,f[i]);
if(maxf > 36500)
{
cout << "zawsze" << endl;
int ans = 0;
for(int i = 1;i <= n - 1;++i)
if(f[ins[i]] > 36500)++ans;
cout << ans << endl;
for(int i = 1;i <= n - 1;++i)
if(f[ins[i]] > 36500)printf("%d ",i);
cout << endl;
}
else
{
cout << maxf << endl;
int ans = 0;
for(int i = 1;i <= n - 1;++i)
if(maxf == f[ins[i]])++ans;
cout << ans << endl;
for(int i = 1;i <= n - 1;++i)
if(maxf == f[ins[i]])printf("%d ",i);
cout << endl;
}
}
return 0;
}
In tag:
图论-连通性-tarjan 图论-拓扑排序
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡