卧薪尝胆,厚积薄发。
NOI2009 植物大战僵尸
Date: Thu Aug 30 15:30:39 CST 2018
In Category:
NoCategory
Description:
一个网格图做植物大战僵尸,每个植物有保护位置,僵尸只能从右边来,每个植物有价值,问最多能获得多少价值,价值可以为负数。
$1\le n\le 20,1\le m \le 30$
Solution:
最大权闭合子图,如果要打这个点就必须打掉保护它的点和他前面的点,但是这样可能会连出环,而一个环是肯定打不掉的,于是用
$tarjan$
求强连通分量,如果有一个强连通分量大小不为一,就缩点,并把点权设为
$-\infty$
,然后求最大权闭合子图即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
int n,m;
#define MAXN 22
#define MAXM 32
int to(int i,int j){return (i - 1) * m + j;}
#define fi first
#define se second
vector<int> g[MAXN * MAXM];
int val[MAXN * MAXM];
#define MAXE 800010
#define INF 0x3f3f3f3f
int s,t;
struct edge
{
int to,nxt,f;
}e[MAXE];
int edgenum = 0;
int lin[MAXN * MAXM];
void add(int a,int b,int f)
{
e[edgenum].to = b;e[edgenum].f = f;e[edgenum].nxt = lin[a];lin[a] = edgenum;++edgenum;
e[edgenum].to = a;e[edgenum].f = 0;e[edgenum].nxt = lin[b];lin[b] = edgenum;++edgenum;
return;
}
int dfn[MAXN * MAXM],low[MAXN * MAXM],tot = 0;
stack<int> st;
bool v[MAXN * MAXM];
int ins[MAXN * MAXM],siz[MAXN * MAXM],scc = 0;
vector<int> cont[MAXN * MAXM];
int pri[MAXN * MAXM];
void tarjan(int k)
{
dfn[k] = low[k] = ++tot;
st.push(k);v[k] = true;
for(int i = 0;i < g[k].size();++i)
{
if(dfn[g[k][i]] == 0)
{
tarjan(g[k][i]);
low[k] = min(low[k],low[g[k][i]]);
}
else if(v[g[k][i]])low[k] = min(low[k],dfn[g[k][i]]);
}
if(dfn[k] == low[k])
{
int t;++scc;
do
{
t = st.top();st.pop();v[t] = false;
ins[t] = scc;++siz[scc];
cont[scc].push_back(t);
}while(t != k);
}
return;
}
int ch[MAXN * MAXM];
bool check()
{
queue<int> q;
q.push(s);
memset(ch,-1,sizeof(ch));
ch[s] = 0;
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(ch[e[i].to] == -1 && e[i].f)
{
ch[e[i].to] = ch[k] + 1;
q.push(e[i].to);
}
}
}
return (ch[t] != -1);
}
int flow(int k,int f)
{
if(k == t)return f;
int r = 0;
for(int i = lin[k];i != -1 && f > r;i = e[i].nxt)
{
if(ch[e[i].to] == ch[k] + 1 && e[i].f)
{
int l = flow(e[i].to,min(f - r,e[i].f));
e[i].f -= l;r += l;e[i ^ 1].f += l;
}
}
if(r == 0)ch[k] = -1;
return r;
}
int dinic()
{
ll ans = 0,r;
while(check())while(r = flow(s,INF))ans += r;
return ans;
}
int main()
{
memset(lin,-1,sizeof(lin));
scanf("%d%d",&n,&m);
s = n * m + 1;t = s + 1;
ll sum = 0;
int k,a,b;
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= m;++j)
{
scanf("%d",&val[to(i,j)]);
scanf("%d",&k);
while(k--)
{
scanf("%d%d",&a,&b);++a;++b;
g[to(a,b)].push_back(to(i,j));
}
if(j < m)g[to(i,j)].push_back(to(i,j + 1));
}
}
for(int i = 1;i <= t;++i)if(dfn[i] == 0)tarjan(i);
for(int i = 1;i <= t;++i)
{
if(siz[ins[i]] == 1)pri[ins[i]] = val[i];
else pri[ins[i]] = -INF;
}
for(int i = 1;i <= scc;++i)
{
if(pri[i] > 0)sum += pri[i];
if(pri[i] > 0)add(s,i,pri[i]);
else add(i,t,-pri[i]);
}
for(int i = 1;i <= t;++i)
for(int k = 0;k < g[i].size();++k)
if(ins[i] != ins[g[i][k]])
add(ins[i],ins[g[i][k]],INF);
cout << sum - dinic() << endl;
return 0;
}
In tag:
图论-最大权闭合子图
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡