卧薪尝胆,厚积薄发。
JSOI2008 Blue Mary的战役地图
Date: Fri Sep 07 09:14:57 CST 2018
In Category:
NoCategory
Description:
给两个方阵,求这两个方阵的最大子方阵的边长。
$1\le n \le 50$
Solution:
矩阵
$hash$
,大概就是把矩阵的每一行做
$hash$
,在把每一行的
$hash$
值作为元素
$hash$
,这样预处理
$O(n^2)$
,单次求子矩阵
$hash$
是
$O(n)$
的,于是二分一个长度
$O(n^2)$
把所有子矩阵的值丢到
$map$
里,再
$O(n^2)$
算第二个矩阵的
$hash$
值在
$map$
里查询即可。
时间复杂度
$O(n^3\log^2 n)$
Solution:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
using namespace std;
int n;
#define MAXN 51
int a[MAXN][MAXN],b[MAXN][MAXN];
typedef long long ll;
ll ha[MAXN][MAXN],hb[MAXN][MAXN];
#define BASE1 998255353ll
ll power[MAXN];
#define BASE2 19260817ll
#define MOD 1000000007ll
#define rint register int
inline int read()
{
rint res = 0,f = 1;
char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
map<ll,bool> tag;
inline ll calc1(int x,int y,int l)
{
ll val = 0;
for(rint i = x;i <= x + l - 1;++i)
val = (val * BASE2 + ha[i][y + l - 1] - ha[i][y - 1] * power[l] % MOD + MOD) % MOD;
return val;
}
inline ll calc2(int x,int y,int l)
{
ll val = 0;
for(rint i = x;i <= x + l - 1;++i)
val = (val * BASE2 + hb[i][y + l - 1] - hb[i][y - 1] * power[l] % MOD + MOD) % MOD;
return val;
}
inline bool check(int l)
{
tag.clear();
for(rint i = 1;i <= n - l + 1;++i)
for(rint j = 1;j <= n - l + 1;++j)
tag[calc1(i,j,l)] = true;
for(rint i = 1;i <= n - l + 1;++i)
for(rint j = 1;j <= n - l + 1;++j)
if(tag.find(calc2(i,j,l)) != tag.end())return true;
return false;
}
int main()
{
scanf("%d",&n);
power[0] = 1;for(rint i = 1;i <= 50;++i)power[i] = power[i - 1] * BASE1 % MOD;
for(rint i = 1;i <= n;++i)
for(rint j = 1;j <= n;++j)
a[i][j] = read();
for(rint i = 1;i <= n;++i)
for(rint j = 1;j <= n;++j)
ha[i][j] = (ha[i][j - 1] * BASE1 % MOD + a[i][j]) % MOD;
for(rint i = 1;i <= n;++i)
for(rint j = 1;j <= n;++j)
b[i][j] = read();
for(rint i = 1;i <= n;++i)
for(rint j = 1;j <= n;++j)
hb[i][j] = (hb[i][j - 1] * BASE1 % MOD + b[i][j]) % MOD;
rint l = 0,r = n,mid;
while(l < r)
{
mid = ((l + r + 1) >> 1);
if(check(mid))l = mid;
else r = mid - 1;
}
printf("%d\n",l);
return 0;
}
In tag:
字符串-hash
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡