卧薪尝胆,厚积薄发。
USACO2009NOV Gold 灯
Date: Sat Jun 30 21:06:06 CST 2018 In Category: NoCategory

Description:

一个图上改变一个灯会影响所有与它相邻的灯的开关状态,求最小操作次数使得所有的灯都被点亮。
$1\le N\le 35$

Solution:

每个灯操作两次不受影响, $\%2$ 相当于异或,故异或有线性性质,列出异或方程组用高斯消元解方程。最后 $dfs$ 枚举所有自由元的取值求最小即可。

Code:


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 36
typedef long long ll;
ll g[MAXN];
int bit(ll a,int pos)
{
return ((a >> (pos - 1)) & 1);
}
void gauss()
{
for(int i = 1;i <= n;++i)
{
bool found = true;
for(int j = i;j <= n;++j)
{
if(bit(g[j],i))
{
swap(g[i],g[j]);
found = true;
break;
}
}
if(!found)continue;
for(int j = i + 1;j <= n;++j)
{
if(bit(g[j],i))
{
g[j] ^= g[i];
}
}
}
return;
}
int res[MAXN];
int ans = 0x3f3f3f3f;
void dfs(int cur,int tot)
{
if(tot > ans)return;
if(cur == 0)
{
ans = min(ans,tot);
return;
}
if(bit(g[cur],cur))
{
res[cur] = bit(g[cur],n + 1);
for(int i = cur + 1;i <= n;++i)res[cur] ^= res[i] & bit(g[cur],i);
if(res[cur] == 0)dfs(cur - 1,tot);
else dfs(cur - 1,tot + 1);
}
else
{
res[cur] = 0;dfs(cur - 1,tot);
res[cur] = 1;dfs(cur - 1,tot + 1);
}
return;
}
int main()
{
scanf("%d%d",&n,&m);
int a,b;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&a,&b);
g[a] |= (1ll << (b - 1));
g[b] |= (1ll << (a - 1));
}
for(int i = 1;i <= n;++i)
{
g[i] |= (1ll << (i - 1));
g[i] |= (1ll << (n + 1 - 1));
}
gauss();
dfs(n,0);
cout << ans << endl;
return 0;
}
Copyright © 2020 wjh15101051
ღゝ◡╹)ノ♡