卧薪尝胆,厚积薄发。
IOI2008 Island 岛屿
Date: Mon Oct 22 16:24:20 CST 2018
In Category:
NoCategory
Description:
求一个基环树森林的直径和。
$1\leqslant n\leqslant10^6$
Solution:
如果做过仙人掌求直径的话那这题就很简单了,先在树上树形
$DP$
一下,那么一个联通块的直径可能经过基环也可能不经过,不经过的话就和树形
$DP$
一样做就行了,经过的话在环上把环复制一倍,然后有
$res=\max(f[i]+f[j]+sum[i]-sum[j])(i-j\leqslant len)$
,发现这个可以用单调队列优化,时间复杂度
$O(n)$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n;
#define MAXN 1000010
struct edge
{
int to,nxt,v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
int fa[MAXN],d[MAXN];
int ind[MAXN];
void add(int a,int b,int c)
{
++ind[b];
++edgenum;e[edgenum].to = b;e[edgenum].v = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
return;
}
bool v[MAXN];
typedef long long ll;
ll f[MAXN];
int s[MAXN << 1],top = 0;
ll sumv[MAXN << 1];
int q[MAXN << 1],head,tail;
ll dia[MAXN];
ll dp(int k)
{
top = 0;
for(int i = k;!v[k];k = fa[k])
{
s[++top] = k;
v[k] = true;
}
for(int i = 1;i <= top;++i)s[i + top] = s[i];
for(int i = 1;i <= 2 * top;++i)sumv[i] = sumv[i - 1] + d[s[i - 1]];
head = 1,tail = 0;
ll res = 0;
q[++tail] = 1;
for(int i = 2;i <= 2 * top;++i)
{
while(head <= tail && q[head] <= i - top)++head;
res = max(res,f[s[i]] + f[s[q[head]]] + sumv[i] - sumv[q[head]]);
while(head <= tail && f[s[q[tail]]] - sumv[q[tail]] < f[s[i]] - sumv[i])--tail;
q[++tail] = i;
}
for(int i = 1;i <= top;++i)res = max(res,dia[s[i]]);
return res;
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)
{
fa[i] = rd();d[i] = rd();
add(i,fa[i],d[i]);
}
queue<int> q;
for(int i = 1;i <= n;++i)
if(ind[i] == 0)q.push(i);
ll ans = 0;
while(!q.empty())
{
int k = q.front();q.pop();
v[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(!v[e[i].to])
{
--ind[e[i].to];
dia[e[i].to] = max(dia[e[i].to],f[e[i].to] + f[k] + e[i].v);
dia[e[i].to] = max(dia[e[i].to],dia[k]);
f[e[i].to] = max(f[e[i].to],f[k] + e[i].v);
if(ind[e[i].to] == 0)q.push(e[i].to);
}
}
}
for(int k = 1;k <= n;++k)
if(!v[k])ans += dp(k);
cout << ans << endl;
return 0;
}
In tag:
DP-树形DP DP-单调队列优化DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡