卧薪尝胆,厚积薄发。
SCOI2010 传送带
Date: Thu Sep 13 06:46:21 CST 2018
In Category:
NoCategory
Description:
二维平面上有两条有方向的传送带,起点和终点分别是
$A,B$
和
$C,D$
,人在平面上和两条传送带上有三个不同的速度,问从
$A$
到
$D$
最少要多少时间。
Solution:
发现在两条传送带上距离都有先增后减的性质,于是三分套三分,先三分第一个传送带的位置,然后再在另一个传送带上三分它的位置即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
double ax,ay,bx,by,cx,cy,dx,dy;
double p,q,w;
double dis(double fx,double fy,double gx,double gy)
{
return sqrt((fx - gx) * (fx - gx) + (fy - gy) * (fy - gy));
}
double query(double sx,double sy)
{
double l = 0,r = 1,lef,rig,d;
double ans = 10000000000000,ans1,ans2;
double x,y;
while(r - l > 1e-6)
{
d = (r - l) / 3;lef = l + d;rig = r - d;
x = cx + (dx - cx) * lef;y = cy + (dy - cy) * lef;
ans1 = dis(x,y,dx,dy) / q + dis(x,y,sx,sy) / w;
x = cx + (dx - cx) * rig;y = cy + (dy - cy) * rig;
ans2 = dis(x,y,dx,dy) / q + dis(x,y,sx,sy) / w;
ans = min(ans,min(ans1,ans2));
if(ans1 < ans2)r = rig;
else l = lef;
}
return ans;
}
int main()
{
scanf("%lf%lf%lf%lf",&ax,&ay,&bx,&by);
scanf("%lf%lf%lf%lf",&cx,&cy,&dx,&dy);
scanf("%lf%lf%lf",&p,&q,&w);
double l = 0,r = 1,lef,rig,d;
double ans = 10000000000000,ans1,ans2;
double x,y;
while(r - l > 1e-6)
{
d = (r - l) / 3;lef = l + d;rig = r - d;
x = ax + (bx - ax) * lef;y = ay + (by - ay) * lef;
ans1 = query(x,y) + dis(x,y,ax,ay) / p;
x = ax + (bx - ax) * rig;y = ay + (by - ay) * rig;
ans2 = query(x,y) + dis(x,y,ax,ay) / p;
ans = min(ans,min(ans1,ans2));
if(ans1 < ans2)r = rig;
else l = lef;
}
printf("%.2lf\n",ans);
return 0;
}
In tag:
算法-三分
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡