卧薪尝胆,厚积薄发。
BJWC2010 严格次小生成树
Date: Thu Nov 22 06:34:49 CST 2018
In Category:
NoCategory
Description:
给一个图,求他的严格次小生成树。
$1\leqslant n\leqslant 10^5$
Solution:
先用
$Kruskal$
求出来一个生成树,然后构建LCT,维护这条链的最大值和次大值,那么在加入一条非树边时会产生一个环,并且这条边一定大于环上所有边,于是如果边长不等于最大值,就用它和最大值的差更新答案,否则用和次大值的,也就是说最大值和次大值必不相同。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m;
#define MAXN 100010
#define MAXM 300010
struct edges
{
int u,v,w;
bool tag;
}es[MAXM];
bool cmp_w(edges a,edges b){return a.w < b.w;}
struct node
{
int c[2],fa,val,mv[2];
bool rev;
}t[MAXN << 1];
inline bool isroot(int k){return (t[t[k].fa].c[0] != k && t[t[k].fa].c[1] != k);}
inline void connect(int k,int f,int p){t[k].fa = f;t[f].c[p] = k;return;}
inline int id(int k){return (t[t[k].fa].c[0] == k ? 0 : 1);}
inline void checkmax(int &a,int &b,int c,int d)
{
if(c > a)
{
if(d > a)a = c,b = d;
else b = a,a = c;
return;
}
if(c == a){if(d > b)b = d;return;}
if(c < a){if(c > b)b = c;return;}
}
inline void maintain(int k)
{
t[k].mv[0] = t[k].val;t[k].mv[1] = 0xc0c0c0c0;
if(t[k].c[0] != 0)checkmax(t[k].mv[0],t[k].mv[1],t[t[k].c[0]].mv[0],t[t[k].c[0]].mv[1]);
if(t[k].c[1] != 0)checkmax(t[k].mv[0],t[k].mv[1],t[t[k].c[1]].mv[0],t[t[k].c[1]].mv[1]);
return;
}
inline void pushdown(int k)
{
if(t[k].rev)
{
t[t[k].c[0]].rev ^= 1;t[t[k].c[1]].rev ^= 1;
swap(t[k].c[0],t[k].c[1]);t[k].rev = false;
}
return;
}
inline void rotate(int x)
{
register int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
if(!isroot(y))t[z].c[fy] = x;
t[x].fa = z;
connect(t[x].c[fx ^ 1],y,fx);
connect(y,x,fx ^ 1);
maintain(y);maintain(x);
return;
}
stack<int> s;
inline void splay(int x)
{
s.push(x);
for(register int i = x;!isroot(i);i = t[i].fa)s.push(t[i].fa);
while(!s.empty()){pushdown(s.top());s.pop();}
while(!isroot(x))
{
register int y = t[x].fa;
if(isroot(y)){rotate(x);break;}
if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
return;
}
inline void access(int k){for(register int i = 0;k;i = k,k = t[k].fa){splay(k);t[k].c[1] = i;maintain(k);}return;}
inline void makeroot(int k){access(k);splay(k);t[k].rev ^= 1;return;}
int f[MAXN];
int find(int x){return (x == f[x] ? x : f[x] = find(f[x]));}
inline void link(int x,int y){makeroot(x);t[x].fa = y;return;}
inline void split(int x,int y){makeroot(x);access(y);splay(y);return;}
int main()
{
scanf("%d%d",&n,&m);
for(register int i = 1;i <= m;++i)
{
es[i].u = rd();es[i].v = rd();
es[i].w = rd();
}
for(register int i = 1;i <= n;++i)f[i] = i;
sort(es + 1,es + 1 + m,cmp_w);
register long long ans = 0x3f3f3f3f3f3f3f3f,sum = 0;
register int tot = n;
for(register int i = 1;i <= m;++i)
{
if(find(es[i].u) != find(es[i].v))
{
f[find(es[i].u)] = find(es[i].v);
++tot;
t[tot].val = es[i].w;
link(es[i].u,tot);link(es[i].v,tot);
maintain(tot);
es[i].tag = true;
sum += es[i].w;
}
}
for(register int i = 1;i <= m;++i)
{
if(!es[i].tag)
{
split(es[i].u,es[i].v);
if(es[i].w != t[es[i].v].mv[0])
{
ans = min(ans,sum + es[i].w - t[es[i].v].mv[0]);
}
else
{
ans = min(ans,sum + es[i].w - t[es[i].v].mv[1]);
}
}
}
cout << ans << endl;
return 0;
}
In tag:
数据结构-LCT 图论-kruskal
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡