卧薪尝胆,厚积薄发。
HNOI2010 平面图判定
Date: Tue Jul 10 21:37:39 CST 2018
In Category:
NoCategory
Description:
给出一个图和一个该图的哈密顿回路,问该图是否为平面图。
$1\le T \le 100$
$3\le N \le 200$
$1\le M \le 10000$
Solution:
先用平面图的性质
边数
$\le$
点数
$\times3-6$
将边数缩小到
$O(n)$
级别,对于不在哈密顿回路上的每条边,都有连在环内和连在环外两种选择,但是有的边和边同时连在环内和环外时会交叉,于是这就是一个
$2-SAT$
模型,两个交叉的边不能同时选,判交叉用顶点顺序。
多组数据一定要读完!!!
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 210000
int x[200000],y[200000];
#define MAXP (MAXN * 3 * 2)
struct edge
{
int to,nxt;
}e[200000];
int edgenum = 0;
int lin[MAXP] = {0};
void add(int a,int b)
{
++edgenum;e[edgenum].to = b;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
int dfn[MAXP],low[MAXP],tot = 0;
bool v[MAXP];
stack<int> s;
int scc = 0,ins[MAXP];
void tarjan(int k)
{
dfn[k] = low[k] = ++tot;
v[k] = true;s.push(k);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(dfn[e[i].to] == 0)
{
tarjan(e[i].to);
low[k] = min(low[k],low[e[i].to]);
}
else if(v[e[i].to])
{
low[k] = min(low[k],dfn[e[i].to]);
}
}
if(low[k] == dfn[k])
{
int t;
++scc;
do
{
t = s.top();s.pop();
v[t] = false;
ins[t] = scc;
}while(t != k);
}
return;
}
int rank[MAXN];
void work()
{
memset(e,0,sizeof(e));
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
memset(lin,0,sizeof(lin));
edgenum = 0;
memset(rank,0,sizeof(rank));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
tot = 0;
scc = 0;
memset(ins,0,sizeof(ins));
memset(v,0,sizeof(v));
while(!s.empty())s.pop();
cin >> n >> m;
for(int i = 1;i <= m;++i)
{
cin >> x[i] >> y[i];
}
int kkk;
for(int i = 1;i <= n;++i)
{
cin >> kkk;
rank[kkk] = i;
}
if(m > 3 * n - 6)
{
puts("NO");
return;
}
for(int i = 1;i <= m;++i)
{
if(rank[x[i]] > rank[y[i]])swap(x[i],y[i]);
}
for(int i = 1;i <= m;++i)
{
for(int j = 1;j <= m;++j)
{
if(i == j)continue;
if(rank[x[i]] < rank[x[j]] && rank[x[j]] < rank[y[i]] && rank[y[i]] < rank[y[j]])
{
add((i - 1) * 2 + 1,(j - 1) * 2 + 2);
add((i - 1) * 2 + 2,(j - 1) * 2 + 1);
}
}
}
for(int i = 1;i <= 2 * m;++i)
{
if(dfn[i] == 0)
{
tarjan(i);
}
}
bool found = false;
for(int i = 1;i <= m;++i)
{
if(ins[(i - 1) * 2 + 1] == ins[(i - 1) * 2 + 2])
{
found = true;
break;
}
}
if(found)puts("NO");
else puts("YES");
return;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)work();
return 0;
}
In tag:
图论-连通性-2-SAT
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡