卧薪尝胆,厚积薄发。
NOI2010 海拔
Date: Mon Sep 10 21:44:09 CST 2018
In Category:
NoCategory
Description:
一个
$(n+1)\times (n+1)$
的网格图,边有流量,左上角海拔为
$0$
,右下角海拔为
$1$
,当流量从低到高时会有流量
$\times$
海拔差的代价,最小化整张图的代价。
$1\le n \le 500$
Solution:
首先可以猜结论:所有的海拔一定都是
$0$
或
$1$
。
然后就是把点划分为两个集合,最小化从第一个集合到第二个集合的边的边权和。
于是求最小割就好了。
Code(网络流):
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n;
#define MAXN 510
struct edge
{
int to,nxt,f;
}e[MAXN * MAXN * 4 * 2];
int edgenum = 0;
int lin[MAXN * MAXN];
inline void add(int a,int b,int f)
{
if(f == 0)return;
e[edgenum].to = b;e[edgenum].f = f;e[edgenum].nxt = lin[a];lin[a] = edgenum;++edgenum;
e[edgenum].to = a;e[edgenum].f = 0;e[edgenum].nxt = lin[b];lin[b] = edgenum;++edgenum;
return;
}
inline int to(int i,int j){return (i - 1) * n + j;}
int s,t;
int ch[MAXN * MAXN];
#define INF 0x3f3f3f3f
#define rint register int
inline bool BFS()
{
memset(ch,-1,sizeof(ch));ch[s] = 0;
queue<int> q;q.push(s);
while(!q.empty())
{
rint k = q.front();q.pop();
for(rint i = lin[k];i != -1;i = e[i].nxt)
{
if(ch[e[i].to] == -1 && e[i].f)
{
ch[e[i].to] = ch[k] + 1;
q.push(e[i].to);
}
}
}
return ch[t] != -1;
}
inline int flow(int k,int f)
{
if(k == t)return f;
rint r = 0;
for(rint i = lin[k];i != -1 && f > r;i = e[i].nxt)
{
if(ch[e[i].to] == ch[k] + 1 && e[i].f)
{
rint l = flow(e[i].to,min(e[i].f,f - r));
e[i].f -= l;r += l;e[i ^ 1].f += l;
}
}
if(r == 0)ch[k] = -1;
return r;
}
inline int dinic()
{
rint ans = 0,r;
while(BFS())while(r = flow(s,INF))ans += r;
return ans;
}
int main()
{
memset(lin,-1,sizeof(lin));
n = read() + 1;
s = 1,t = n * n;
for(rint i = 1;i <= n;++i)
for(rint j = 1;j < n;++j)
add(to(i,j),to(i,j + 1),read());
for(rint i = 1;i < n;++i)
for(rint j = 1;j <= n;++j)
add(to(i,j),to(i + 1,j),read());
for(rint i = 1;i <= n;++i)
for(rint j = 2;j <= n;++j)
add(to(i,j),to(i,j - 1),read());
for(rint i = 2;i <= n;++i)
for(rint j = 1;j <= n;++j)
add(to(i,j),to(i - 1,j),read());
printf("%d\n",dinic());
return 0;
}
Code(对偶图最短路):
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n;
#define MAXN 510
int to(int i,int j){return (i - 1) * n + j;}
int s,t;
struct edge
{
int to,nxt,v;
}e[MAXN * MAXN * 4];
int edgenum = 0;
int lin[MAXN * MAXN] = {0};
void add(int a,int b,int c)
{//cout << a << " " << b << " " << c << endl;
e[++edgenum] = (edge){b,lin[a],c};lin[a] = edgenum;
return;
}
int d[MAXN * MAXN];
bool vis[MAXN * MAXN];
int dijkstra()
{
memset(d,0x3f,sizeof(d));
priority_queue< pair<int,int> > q;q.push(make_pair(0,s));
d[s] = 0;
while(!q.empty())
{
int k = q.top().second;q.pop();
if(vis[k])continue;
vis[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(d[e[i].to] > d[k] + e[i].v)
{//cout << k << " -> " << e[i].to << " " << e[i].v << endl;
d[e[i].to] = d[k] + e[i].v;
q.push(make_pair(-d[e[i].to],e[i].to));
}
}
}
return d[t];
}
int main()
{
scanf("%d",&n);
s = n * n + 1;t = s + 1;
for(int i = 1;i <= n;++i)add(to(1,i),t,read());
for(int i = 2;i <= n;++i)for(int j = 1;j <= n;++j)add(to(i,j),to(i - 1,j),read());
for(int i = 1;i <= n;++i)add(s,to(n,i),read());
for(int i = 1;i <= n;++i)
{
add(s,to(i,1),read());
for(int j = 2;j <= n;++j)add(to(i,j - 1),to(i,j),read());
add(to(i,n),t,read());
}
for(int i = 1;i <= n;++i)add(t,to(1,i),read());
for(int i = 2;i <= n;++i)for(int j = 1;j <= n;++j)add(to(i - 1,j),to(i,j),read());
for(int i = 1;i <= n;++i)add(to(n,i),s,read());
for(int i = 1;i <= n;++i)
{
add(to(i,1),s,read());
for(int j = 2;j <= n;++j)add(to(i,j),to(i,j - 1),read());
add(t,to(i,n),read());
}
printf("%d\n",dijkstra());
return 0;
}
In tag:
图论-dinic
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡