卧薪尝胆,厚积薄发。
股市的预测
Date: Sun Jan 13 18:57:36 CST 2019
In Category:
NoCategory
Description:
给一个字符串,求
$ABA$
形子串的个数,其中
$|B|=m$
。
$1\leqslant n\leqslant 50000$
Solution:
类似优秀的拆分那样的做法,枚举
$A$
的长度
$l$
,然后每隔
$l$
标一个关键点,然后计算
$i$
和
$i+m+l$
的
$lcp$
和
$lcs$
,这个可以用后缀数组求,然后如果能构成就统计一下答案即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 200010
int h[MAXN],s[MAXN];
int s_[MAXN];
int sa1[MAXN],rnk1[MAXN],height1[MAXN];
int sa2[MAXN],rnk2[MAXN],height2[MAXN];
int c1[MAXN],c2[MAXN];
int c[MAXN];
void make_SA(int n,int m,int s[],int sa[],int rnk[],int height[])
{
int *x = c1,*y = c2;
for(int i = 1;i <= m;++i)c[i] = 0;
for(int i = 1;i <= n;++i)++c[x[i] = s[i]];
for(int i = 1;i <= m;++i)c[i] += c[i - 1];
for(int i = n;i >= 1;--i)sa[c[x[i]]--] = i;
int p = 0;
for(int k = 1;k <= n;k = k << 1)
{
p = 0;
for(int i = n - k + 1;i <= n;++i)y[++p] = i;
for(int i = 1;i <= n;++i)if(sa[i] > k)y[++p] = sa[i] - k;
for(int i = 1;i <= m;++i)c[i] = 0;
for(int i = 1;i <= n;++i)++c[x[y[i]]];
for(int i = 1;i <= m;++i)c[i] += c[i - 1];
for(int i = n;i >= 1;--i)sa[c[x[y[i]]]--] = y[i];
p = 1;
swap(x,y);
x[sa[1]] = 1;
for(int i = 2;i <= n;++i)
{
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
}
if(p >= n)break;
m = p;
}
for(int i = 1;i <= n;++i)rnk[sa[i]] = i;
int k = 0;
for(int i = 1;i <= n;++i)
{
if(rnk[i] == 1)continue;
if(k)--k;
int j = sa[rnk[i] - 1];
while(j + k <= n && i + k <= n && s[i + k] == s[j + k])++k;
height[rnk[i]] = k;
}
return;
}
int f1[MAXN][17],f2[MAXN][17];
int lg[MAXN];
int lcp(int a,int b)
{
if(a == 0 || b == 0)return 0;
if(a == b)return n - a + 1;
a = rnk1[a];b = rnk1[b];if(a > b)swap(a,b);++a;
int len = lg[b - a + 1];
return min(f1[a][len],f1[b - (1 << len) + 1][len]);
}
int lcs(int a,int b)
{
if(a == 0 || b == 0)return 0;
a = n - a + 1;b = n - b + 1;
if(a == b)return n - a + 1;
a = rnk2[a];b = rnk2[b];if(a > b)swap(a,b);++a;
int len = lg[b - a + 1];
return min(f2[a][len],f2[b - (1 << len) + 1][len]);
}
int ans = 0;
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)scanf("%d",&h[i]);
--n;
for(int i = 1;i <= n;++i)s_[i] = s[i] = h[i + 1] - h[i];
sort(s_ + 1,s_ + 1 + n);
s_[0] = unique(s_ + 1,s_ + 1 + n) - s_ - 1;
for(int i = 1;i <= n;++i)s[i] = lower_bound(s_ + 1,s_ + 1 + s_[0],s[i]) - s_;
make_SA(n,s_[0],s,sa1,rnk1,height1);
for(int i = 1,j = n;i < j;++i,--j)swap(s[i],s[j]);
make_SA(n,s_[0],s,sa2,rnk2,height2);
for(int i = 1;i <= n;++i)f1[i][0] = height1[i];
for(int i = 1;i <= n;++i)f2[i][0] = height2[i];
for(int k = 1;k <= 16;++k)
for(int i = 1;i <= n;++i)
f1[i][k] = min(f1[i][k - 1],f1[i + (1 << (k - 1))][k - 1]);
for(int k = 1;k <= 16;++k)
for(int i = 1;i <= n;++i)
f2[i][k] = min(f2[i][k - 1],f2[i + (1 << (k - 1))][k - 1]);
for(int i = 2;i <= n;++i)lg[i] = lg[i >> 1] + 1;
for(int l = 1;l <= (n - m) / 2;++l)
{
for(int i = 1;i + m + l <= n;i += l)
{
int l1 = min(lcs(i,i + l + m),l),l2 = min(lcp(i,i + l + m),l);
ans += max(l1 + l2 - l,0);
}
}
cout << ans << endl;
return 0;
}
In tag:
字符串-后缀数组
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡