卧薪尝胆,厚积薄发。
SDOI2011 计算器
Date: Thu Jun 14 19:53:45 CST 2018
In Category:
NoCategory
Description:
1、计算
$y^z\%p$
的值;
2、计算满足
$xy≡z\text{ }(mod\text{ }p)$
的最小非负整数x;
3、计算满足
$y^x ≡z\text{ }(mod\text{ }p)$
的最小非负整数x。
Solution:
1、快速幂。
2、
$xy-kp=z$
扩欧。
3、
$BSGS$
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
using namespace std;
typedef long long ll;
int testcases,k;
int y,z,p;
ll power(ll a,ll b,ll m)
{
ll res = 1;
while(b > 0)
{
if(b & 1)res = (res * a) % m;
a = (a * a) % m;
b = b >> 1;
}
return res;
}
int gcd(int a,int b){return (b == 0 ? a : gcd(b,a % b));}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
ll g = exgcd(b,a % b,y,x);
y -= a / b * x;
return g;
}
void BSGS(ll a,ll b,ll p)
{
map<int,int> hash;
hash.clear();
b %= p;
ll t = (ll)sqrt(p) + 1;
for(int i = 0;i < t;++i)
{
hash[(ll)b * power(a,i,p) % p] = i;
}
a = power(a,t,p);
if(a == 0)
{
if(b == 0)
{
puts("1");
}
else
{
puts("Orz, I cannot find x!");
}
return;
}
for(int i = 0;i <= t;++i)
{
int v = power(a,i,p);
int j = hash.find(v) == hash.end() ? -1 : hash[v];
if(j >= 0 && i * t - j >= 0)
{
printf("%lld\n",i * t - j);
return;
}
}
puts("Orz, I cannot find x!");
return;
}
int main()
{
scanf("%d%d",&testcases,&k);
for(int i = 1;i <= testcases;++i)
{
scanf("%d%d%d",&y,&z,&p);
switch (k)
{
case 1:
{
printf("%lld\n",power((ll)y,(ll)z,(ll)p));
break;
}
case 2:
{
int g = gcd(y,p);
if(z % g == 0)
{
y /= g;p /= g;z /= g;
ll x,k;
exgcd((ll)y,(ll)p,x,k);
x *= z;
while(x < 0)x += (ll)p;
x %= p;
printf("%lld\n",x);
}
else
{
puts("Orz, I cannot find x!");
}
break;
}
case 3:
{
BSGS((ll)y,(ll)z,(ll)p);
break;
}
}
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡