卧薪尝胆,厚积薄发。
SDOI2011 消防
Date: Sun Sep 23 21:26:02 CST 2018
In Category:
NoCategory
Description:
给一棵树,树边有边权,选一条长度不超过
$m$
的路径使得所有点到这条路径距离的最大值最小。
$1\leqslant n \leqslant300000$
Solution:
首先有一个性质,就是最后选出来的这条路经一定在直径上,而且是随便一条直径。证明也不难,画个图就会发现如果路径的端点最终离开了直径,那么直径的端点到这条路径的距离一定会增大,且大于把端点放在直径上时的值。
知道这个这题就很好解了,先随便求出一个直径,把他放在序列上,然后把每个点的子树的最大深度放到这个点上,距离不超过
$m$
可以双指针搞,区间最值可以单调队列搞,和两端点的距离取个最大值更新答案即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n,m;
#define MAXN 300010
struct edge
{
int to,nxt,v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
inline void add(int a,int b,int c)
{
++edgenum;e[edgenum].to = b;e[edgenum].v = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].v = c;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
int d[MAXN];
bool vis[MAXN];
int fa[MAXN],val[MAXN];
inline int bfs(int s)
{
queue<int> q;q.push(s);
memset(vis,false,sizeof(vis));
d[s] = 0;vis[s] = true;fa[s] = 0;
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(!vis[e[i].to])
{
fa[e[i].to] = k;val[e[i].to] = e[i].v;
d[e[i].to] = d[k] + e[i].v;
vis[e[i].to] = true;
q.push(e[i].to);
}
}
}
int ans = s;
for(int i = 1;i <= n;++i)
{
if(d[i] > d[ans])ans = i;
}
return ans;
}
int s[MAXN],top = 0;
int dep[MAXN];
void getdep(int t,int k,int depth)
{
dep[t] = max(dep[t],depth);
vis[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(vis[e[i].to])continue;
getdep(t,e[i].to,depth + e[i].v);
}
return;
}
int sum[MAXN];
int main()
{
n = read();m = read();
int a,b,c;
for(int i = 1;i < n;++i)
{
a = read();b = read();c = read();
add(a,b,c);
}
int pos = bfs(1);
pos = bfs(pos);
memset(vis,false,sizeof(vis));
for(int i = pos;i != 0;i = fa[i])
{
s[++top] = i;sum[top + 1] = sum[top] + val[i];
vis[i] = true;
}
for(int i = 1;i <= top;++i)getdep(i,s[i],0);
deque<int> q;
int ans = 0x3f3f3f3f;
for(int l = 1,r = 1;r <= top;++r)
{
while(sum[r] - sum[l] > m)++l;
while(!q.empty() && q.front() < l)q.pop_front();
while(!q.empty() && dep[q.back()] < dep[r])q.pop_back();
q.push_back(r);
ans = min(ans,max(dep[q.front()],max(sum[l],sum[top] - sum[r])));//cout << l << " " << r << " " << dep[q.front()] << " " << sum[l] << " " << sum[top] - sum[r] << endl;
}
cout << ans << endl;
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡