卧薪尝胆,厚积薄发。
SDOI2011 消耗战
Date: Tue Nov 20 16:26:58 CST 2018 In Category: NoCategory

Description:

给一棵有边权的树,多次询问把其中 $k$ 个关键点和 $1$ 号节点断开的最小代价。
$1\leqslant n\leqslant 250000,\sum k\leqslant500000$

Solution:

首先求出 $val[k]$ 表示从根节点到 $k$ 的最小边权,即断开 $k$ 这棵子树的花费,那么就可以用一个树形 $DP$ 求出 $f[i]=\min(val[k],\sum f[son[k][i]])$ , $f[root]$ 就是答案,但是这样单次是 $O(n)$ 的,那么可以把这 $k$ 个点的虚树建出来,然后在虚树上树形 $DP$ 就行了。

Code:


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m;
#define MAXN 250010
struct edge
{
int to,nxt,v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,int c)
{
e[++edgenum] = (edge){b,lin[a],c};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b],c};lin[b] = edgenum;
return;
}
int dfn[MAXN],tot = 0;
long long val[MAXN];
void dfs(int k)
{
dfn[k] = ++tot;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(dfn[e[i].to] == 0)
{
val[e[i].to] = min(val[k],(long long)e[i].v);
dfs(e[i].to);
}
}
return;
}
int fa[MAXN],siz[MAXN],son[MAXN],top[MAXN],dep[MAXN];
void dfs1(int k,int depth)
{
dep[k] = depth;
siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa[k])continue;
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])
{
son[k] = e[i].to;
}
}
return;
}
void dfs2(int k,int tp)
{
top[k] = tp;
if(son[k] == 0)return;
dfs2(son[k],tp);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fa[top[a]];
}
return (dep[a] < dep[b] ? a : b);
}
int v[MAXN];
bool cmp_dfn(int a,int b){return dfn[a] < dfn[b];}
int s[MAXN],tp = 0;
vector<int> g[MAXN];
void add(int f,int p)
{
g[f].push_back(p);
return;
}
int root;
long long f[MAXN];
bool tag[MAXN];
void dp(int k)
{
long long sum = 0;
for(vector<int>::iterator i = g[k].begin();i != g[k].end();++i)
{
dp(*i);
sum += f[*i];
}
g[k].clear();
if(tag[k])f[k] = val[k];
else f[k] = min(sum,(long long)val[k]);
return;
}
int main()
{
scanf("%d",&n);
int a,b,c;
for(int i = 1;i < n;++i)
{
a = rd();b = rd();c = rd();
add(a,b,c);
}
val[1] = 0x3f3f3f3f3f3f3f3f;
dfs(1);
dfs1(1,1);dfs2(1,1);
scanf("%d",&m);
while(m--)
{
scanf("%d",&v[0]);
for(int i = 1;i <= v[0];++i)v[i] = rd();
sort(v + 1,v + 1 + v[0],cmp_dfn);
tp = 0;
s[++tp] = 1;
for(int i = 1;i <= v[0];++i)
{
tag[v[i]] = true;
int lca = LCA(s[tp],v[i]);
if(lca == s[tp])
{
s[++tp] = v[i];
continue;
}
while(tp >= 2)
{
if(dfn[lca] < dfn[s[tp - 1]])
{
add(s[tp - 1],s[tp]);
--tp;
}
else
{
add(lca,s[tp]);
--tp;
break;
}
}
if(lca != s[tp])s[++tp] = lca;
s[++tp] = v[i];
}
while(tp >= 2)
{
add(s[tp - 1],s[tp]);
--tp;
}
root = s[tp];
dp(root);
printf("%lld\n",f[root]);
for(int i = 1;i <= v[0];++i)tag[v[i]] = false;
}
return 0;
}
In tag: 树-虚树
Copyright © 2020 wjh15101051
ღゝ◡╹)ノ♡