卧薪尝胆,厚积薄发。
ZJOI2011 营救皮卡丘
Date: Tue Mar 19 16:00:10 CST 2019
In Category:
NoCategory
Description:
给一个图,选
$k$
条从
$0$
开始的路径覆盖整个图。
$1\leqslant n\leqslant 150,1\leqslant m\leqslant 20000$
Solution:
拆点之后就是一个有源汇有上下界最小费用可行流,可以先用
$floyed$
预处理
$d[i][j]$
表示在只经过不大于
$i,j$
的点的情况下从
$i$
到
$j$
的最短距离,然后按有上下界可行流的方式连边跑最小费用最大流即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
int n,m,k;
#define MAXN 400
#define MAXM 60010
struct edge
{
int to,nxt,f,c;
}e[MAXM << 1];
int edgenum = 0;
int lin[MAXN];
void add(int a,int b,int f,int c)
{
e[edgenum] = (edge){b,lin[a],f,c};lin[a] = edgenum++;
e[edgenum] = (edge){a,lin[b],0,-c};lin[b] = edgenum++;
return;
}
int pre[MAXN],d[MAXN],rate[MAXN];
bool inq[MAXN];
int s,ss,t,tt;
#define INF 0x3f3f3f3f
bool SPFA()
{
queue<int> q;q.push(s);
memset(d,0x3f,sizeof(d));d[s] = 0;
rate[s] = INF;
while(!q.empty())
{
int k = q.front();q.pop();
inq[k] = false;
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(d[e[i].to] > d[k] + e[i].c && e[i].f)
{
d[e[i].to] = d[k] + e[i].c;
pre[e[i].to] = i;
rate[e[i].to] = min(rate[k],e[i].f);
if(!inq[e[i].to])
{
inq[e[i].to] = true;
q.push(e[i].to);
}
}
}
}
return d[t] != INF;
}
int flow()
{
for(int i = t;i != s;i = e[pre[i] ^ 1].to)
{
e[pre[i]].f -= rate[t];
e[pre[i] ^ 1].f += rate[t];
}
return rate[t] * d[t];
}
int EK()
{
int ans = 0;
while(SPFA())ans += flow();
return ans;
}
int dis[MAXN][MAXN];
int main()
{
memset(lin,-1,sizeof(lin));
scanf("%d%d%d",&n,&m,&k);
int a,b,c;
memset(dis,0x3f,sizeof(dis));
for(int i = 1;i <= m;++i)
{
scanf("%d%d%d",&a,&b,&c);
dis[a][b] = dis[b][a] = min(dis[a][b],c);
}
for(int i = 0;i <= n;++i)dis[i][i] = 0;
for(int k = 0;k <= n;++k)
for(int i = 0;i <= n;++i)
for(int j = 0;j <= n;++j)
if(k < max(i,j))dis[i][j] = min(dis[i][j],dis[i][k] + dis[k][j]);
s = 2 * n + 1;t = s + 1;
for(int i = 1;i <= n;++i)add(0,2 * i - 1,1,dis[0][i]);
for(int i = 1;i <= n;++i)add(s,2 * i,1,0);
for(int i = 1;i <= n;++i)add(2 * i - 1,t,1,0);
add(s,0,k,0);
for(int i = 1;i <= n;++i)
for(int j = i + 1;j <= n;++j)
add(2 * i,2 * j - 1,1,dis[i][j]);
cout << EK() << endl;
return 0;
}
In tag:
图论-有源汇有上下界最小费用可行流
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡