卧薪尝胆,厚积薄发。
Balkan 2011 Time is money
Date: Sun Mar 24 20:47:15 CST 2019
In Category:
NoCategory
Description:
每条边有两个权值
$x$
和
$y$
,求一个生成树使得
$\sum x\times \sum y$
最小。
$1\leqslant n\leqslant 200,1\leqslant m\leqslant 10000$
Solution:
我们可以把每个生成树看成二维平面上的点
$(\sum x,\sum y)$
,那么问题就转化成了找一个点
$x\times y$
最小,这个点应该在下凸壳上,那么我们先找两个一定在下凸壳上的点
$A(minx,y)$
和
$B(x,miny)$
,然后在直线下方找一个在凸包上且
$x\times y$
最小的点,我们令那个点为
$C$
,那么我们让
$\overrightarrow{AB}\times \overrightarrow{AC}$
最小也就是
$S_{\triangle ABC}$
最大,那么:
$$
\begin{align}
2S&=\overrightarrow{AB}\times \overrightarrow{AC}\\
&=(B.x-A.x,B.y-A.y)\times (C.x-A.x,C.y-A.y)\\
&=(B.x-A.x)\times (C.y-A.y)-(B.y-A.y)\times (C.x-A.x)\\
\end{align}
$$
这样求到最后只与
$C$
有关的项是:
$$
(B.x-A.x)\times C.y-(B.y-A.y)\times C.x\\
$$
那么我们只要把每条边的权值看成
$(B.x-A.x)\times y[i]-(B.y-A.y)\times x[i]$
再做最小生成树即可,然后这样无限递归下去直到直线的一侧不存在点。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,m;
#define MAXN 210
#define MAXM 10010
typedef long long ll;
struct edges
{
int u,v,x,y;
ll w;
}es[MAXM];
bool cmp_w(edges a,edges b){return a.w < b.w;}
struct point
{
ll x,y;
point(ll x_ = 0,ll y_ = 0){x = x_;y = y_;}
};
point operator - (point a,point b){return (point){a.x - b.x,a.y - b.y};}
ll operator * (point a,point b){return a.x * b.y - a.y * b.x;}
int f[MAXN];
int find(int x){return (f[x] == 0 ? x : f[x] = find(f[x]));}
point kruskal()
{
sort(es + 1,es + 1 + m,cmp_w);
memset(f,0,sizeof(f));
point res;
for(int i = 1;i <= m;++i)
{
int p = find(es[i].u),q = find(es[i].v);
if(p == q)continue;
res.x += es[i].x;res.y += es[i].y;
f[p] = q;
}
return res;
}
#define INF 0x3f3f3f3f3f3f3f3f
point ans;
point min(point a,point b)
{
if(a.x * a.y < b.x * b.y)return a;
else return b;
}
void solve(point A,point B)
{
ans = min(ans,min(A,B));
for(int i = 1;i <= m;++i)es[i].w = (B.x - A.x) * es[i].y - (B.y - A.y) * es[i].x;
point C = kruskal();
if((B - A) * (C - A) >= 0)return;
solve(A,C);solve(C,B);
return;
}
int main()
{
ans.x = INF;ans.y = INF;
scanf("%d%d",&n,&m);
for(int i = 1;i <= m;++i)
{
es[i].u = rd() + 1;es[i].v = rd() + 1;
es[i].x = rd();es[i].y = rd();
}
for(int i = 1;i <= m;++i)es[i].w = es[i].x;
point A = kruskal();
for(int i = 1;i <= m;++i)es[i].w = es[i].y;
point B = kruskal();
solve(A,B);
cout << ans.x << " " << ans.y << endl;
return 0;
}
In tag:
图论-最小生成树-kruskal
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡