卧薪尝胆,厚积薄发。
SJY摆棋子
Date: Sat Dec 15 20:55:31 CST 2018
In Category:
NoCategory
Description:
给出
$n$
个点,
$m$
次操作,每次插入一个点或者查询某个点到所有点的曼哈顿距离最小值。
$1\leqslant n\leqslant 500000$
Solution:
$KD-Tree$
模板题。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n,m;
#define MAXN 500010
struct node
{
int lc,rc,d[2],mx[2],mn[2];
int siz;
node(int x = 0,int y = 0){lc = rc = 0;d[0] = x;d[1] = y;}
inline int& operator [](int x){return d[x];}
}t[MAXN << 1];
struct point
{
int d[2];
}p[MAXN];
int ptr = 0;
int del[MAXN << 1],delptr = 0;
inline int newnode()
{
if(delptr != 0)return del[delptr--];
else return ++ptr;
}
int cmpd;
bool operator < (point a,point b){return a.d[cmpd] < b.d[cmpd];}
inline int dis(node a,node b){return abs(a[0] - b[0]) + abs(a[1] - b[1]);}
int root = 0;
inline void updata(int rt)
{
t[rt].siz = t[t[rt].lc].siz + t[t[rt].rc].siz + 1;
for(register int i = 0;i <= 1;++i)
{
if(t[rt].lc)
{
t[rt].mn[i] = min(t[rt].mn[i],t[t[rt].lc].mn[i]);
t[rt].mx[i] = max(t[rt].mx[i],t[t[rt].lc].mx[i]);
}
if(t[rt].rc)
{
t[rt].mn[i] = min(t[rt].mn[i],t[t[rt].rc].mn[i]);
t[rt].mx[i] = max(t[rt].mx[i],t[t[rt].rc].mx[i]);
}
}
return;
}
void build(int &rt,int l,int r,int type)
{
if(l > r)return;
cmpd = type;
rt = newnode();t[rt].siz = 1;
register int mid = ((l + r) >> 1);
nth_element(p + l,p + mid,p + r + 1);
t[rt][0] = p[mid].d[0];t[rt][1] = p[mid].d[1];
for(register int i = 0;i <= 1;++i)t[rt].mn[i] = t[rt].mx[i] = t[rt].d[i];
build(t[rt].lc,l,mid - 1,type ^ 1);
build(t[rt].rc,mid + 1,r,type ^ 1);
updata(rt);
return;
}
const double ALPHA = 0.8;
inline int create(node p)
{
register int rt = newnode();t[rt] = p;t[rt].siz = 1;
for(register int i = 0;i <= 1;++i)t[rt].mn[i] = t[rt].mx[i] = t[rt].d[i];
return rt;
}
int tot;
void dfs(int rt)
{
if(rt == 0)return;
++tot;
p[tot].d[0] = t[rt][0];p[tot].d[1] = t[rt][1];
del[++delptr] = rt;
dfs(t[rt].lc);dfs(t[rt].rc);
memset(&t[rt],0,sizeof(t[rt]));
return;
}
void insert(int &rt,node p,int type,bool flag)
{
if(rt == 0){rt = create(p);return;}
bool tag = false;
if(p[type] <= t[rt][type])
{
tag = (t[t[rt].lc].siz + 1 >= (t[rt].siz + 1) * ALPHA);
insert(t[rt].lc,p,type ^ 1,flag || tag);
}
else
{
tag = (t[t[rt].rc].siz + 1 >= (t[rt].siz + 1) * ALPHA);
insert(t[rt].rc,p,type ^ 1,flag || tag);
}
if(!flag && tag)
{
tot = 0;dfs(rt);
build(rt,1,tot,type);
return;
}
updata(rt);
return;
}
inline int get(node k,node x)
{
register int sum = 0;
for(register int i = 0;i <= 1;++i)sum += max(0,k.mn[i] - x[i]);
for(register int i = 0;i <= 1;++i)sum += max(0,x[i] - k.mx[i]);
return sum;
}
int ans = 0;
#define INF 0x3f3f3f3f
void query(int rt,node x)
{
register int d,dl = INF,dr = INF;
d = dis(t[rt],x);
ans = min(ans,d);
if(t[rt].lc)dl = get(t[t[rt].lc],x);
if(t[rt].rc)dr = get(t[t[rt].rc],x);
if(dl < dr)
{
if(dl < ans)query(t[rt].lc,x);
if(dr < ans)query(t[rt].rc,x);
}
else
{
if(dr < ans)query(t[rt].rc,x);
if(dl < ans)query(t[rt].lc,x);
}
return;
}
inline int query(node x)
{
ans = INF;
query(root,x);
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(register int i = 1;i <= n;++i)
{
p[i].d[0] = rd();p[i].d[1] = rd();
}
build(root,1,n,0);
register int opt,x,y;
for(register int i = 1;i <= m;++i)
{
opt = rd();x = rd();y = rd();
if(opt == 2)printf("%d\n",query(node(x,y)));
else insert(root,node(x,y),0,false);
}
return 0;
}
In tag:
数据结构-KDTree
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡