卧薪尝胆,厚积薄发。
USACO12OPEN 平衡的奶牛群
Date: Sun Oct 28 11:35:14 CST 2018
In Category:
NoCategory
Description:
给
$n$
个数,从中任意选出一些数,使这些数能分成和相等的两组,求有多少种选数的方案。
$1\leqslant n\leqslant 20$
Solution:
$n$
只有
$20$
,那就可以折半搜索,先
$3^{10}$
搜出来前半部分,再搜出来后半部分,然后一个从大到小一个从小到大排序,双指针扫一下,注意如果有很多相同的值要扫很多遍,去重可以把所有选择方案状压一下,用一个
$vis$
记录。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 22
int v[MAXN];
struct state
{
int t,x;
}lef[200000],rig[200000];
int totlef = 0,totrig = 0;
bool cmp_x_lth(state a,state b){return a.x < b.x;}
bool cmp_x_htl(state a,state b){return a.x > b.x;}
void dfs1(int pos,int sum,int sta)
{
if(pos > n / 2)
{
lef[++totlef] = (state){sta,sum};
return;
}
dfs1(pos + 1,sum,sta);
dfs1(pos + 1,sum + v[pos],sta |= (1 << (pos - 1)));
dfs1(pos + 1,sum - v[pos],sta |= (1 << (pos - 1)));
return;
}
void dfs2(int pos,int sum,int sta)
{
if(pos > n)
{
rig[++totrig] = (state){sta,sum};
return;
}
dfs2(pos + 1,sum,sta);
dfs2(pos + 1,sum + v[pos],sta |= (1 << (pos - 1)));
dfs2(pos + 1,sum - v[pos],sta |= (1 << (pos - 1)));
return;
}
bool vis[1 << MAXN];
int ans = 0;
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)scanf("%d",&v[i]);
dfs1(1,0,0);
dfs2(n / 2 + 1,0,0);
sort(lef + 1,lef + 1 + totlef,cmp_x_lth);
sort(rig + 1,rig + 1 + totrig,cmp_x_htl);
memset(vis,false,sizeof(vis));
int last;
for(int i = 1,j = 1;i <= totlef;++i)
{
while(j <= totrig && lef[i].x + rig[j].x > 0)++j;
if(i != 1 && lef[i].x == lef[i - 1].x)j = last;
last = j;
while(j <= totrig && lef[i].x + rig[j].x == 0)
{
if(!vis[lef[i].t | rig[j].t])
{
++ans;
vis[lef[i].t | rig[j].t] = true;
}
++j;
}
}
cout << ans - 1 << endl;
return 0;
}
In tag:
算法-折半搜索
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡