卧薪尝胆,厚积薄发。
HNOI2012 射箭
Date: Sun Dec 02 15:48:37 CST 2018
In Category:
NoCategory
Description:
平面上有
$n$
个竖直的线段,每次可以从原点发射一条抛物线,问最多能从第一个开始连续穿过几条线段。
$1\leqslant n\leqslant 10^5$
Solution:
设抛物线的方程为
$y=ax^2+bx$
,那么我们可以二分最后的答案,然后判断是否存在一个抛物线能穿过所有线段,发现每一个线段都是两个类似
$ax_0^2+bx_0\leqslant/\geqslant y_0$
的限制,如果我们把
$a$
看成
$x$
,
$b$
看成
$y$
,那么会发现这个限制就是一个半平面,于是做半平面交判断是否有解即可。
Code:
好像卡精度,
$60$
调不出来了。。。
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 100010
struct segment
{
double x,y1,y2;
}s[MAXN];
struct point
{
double x,y;
point(double x_ = 0.0,double y_ = 0.0){x = x_;y = y_;}
}p[MAXN << 1];
typedef point vector;
vector operator + (vector a,vector b){return (vector){a.x + b.x,a.y + b.y};}
vector operator - (vector a,vector b){return (vector){a.x - b.x,a.y - b.y};}
vector operator * (vector a,double b){return (vector){a.x * b,a.y * b};}
double crossmul(vector a,vector b){return a.x * b.y - a.y * b.x;}
double angle(vector a){return atan2(a.y,a.x);}
#define eps 1e-10
bool equal(double a,double b){return (fabs(a - b) < eps);}
int sign(double k){return (equal(k,0.0) ? 0 : (k < 0 ? -1 : 1));}
struct plane
{
point p;vector v;
plane(){};
plane(point p_,point v_){p = p_;v = v_;}
}pl[MAXN << 1],q[MAXN << 1];
int head,tail;
bool in(point p,plane k){return sign(crossmul(p - k.p,k.v)) >= 0;}
point intersection(plane a,plane b){return b.p + b.v * (crossmul(a.v,a.p - b.p) / crossmul(a.v,b.v));}
bool cmp(plane a,plane b){return angle(a.v) < angle(b.v);}
bool check(int k)
{
if(k <= 1)return true;
int n = 0;
point a,b;
for(int i = 1;i <= k;++i)
{
a = (point){100.0,-1.0 * s[i].x * 100 + s[i].y1 * 100 / s[i].x};
b = (point){0.0,s[i].y1 * 100 / s[i].x};
pl[++n] = (plane){a,b - a};
a = (point){100.0,-1.0 * s[i].x * 100 + s[i].y2 * 100 / s[i].x};
b = (point){0.0,s[i].y2 * 100 / s[i].x};
pl[++n] = (plane){a,a - b};
}
sort(pl + 1,pl + 1 + n,cmp);
int tot = 0;
for(int i = 1;i <= n;++i)
{
if(tot == 0)pl[++tot] = pl[i];
else if(!equal(angle(pl[tot].v),angle(pl[i].v)))pl[++tot] = pl[i];
else if(!in(pl[tot].p,pl[i]))pl[tot] = pl[i];
}
n = tot;head = 1;tail = 2;
q[1] = pl[1];q[2] = pl[2];
for(int i = 3;i <= n;++i)
{
while(head < tail && !in(intersection(q[tail],q[tail - 1]),pl[i]))--tail;
while(head < tail && !in(intersection(q[head],q[head + 1]),pl[i]))++head;
if(head == tail && sign(crossmul(q[head].v,pl[i].v)) <= 0)return false;
q[++tail] = pl[i];
}
while(head < tail && !in(intersection(q[tail],q[tail - 1]),q[head]))--tail;
int m = tail - head + 1;
for(int i = 1;i < m;++i)p[i] = intersection(q[head + i - 1],q[head + i]);
p[0] = p[m] = intersection(q[head],q[tail]);
double ans = 0;
for(int i = 0;i < m;++i)ans = ans + crossmul(p[i],p[i + 1]);
return sign(ans) > 0;
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)scanf("%lf%lf%lf",&s[i].x,&s[i].y1,&s[i].y2);
int l = 1,r = n,mid;
while(l < r)
{
mid = ((l + r + 1) >> 1);
if(check(mid))l = mid;
else r = mid - 1;
}
cout << l << endl;
return 0;
}
In tag:
数学-计算几何-半平面交
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡