卧薪尝胆,厚积薄发。
USACO12DEC GOLD Running Away From the Barn
Date: Mon Oct 15 23:48:14 CST 2018 In Category: NoCategory

Description:

给出以 $1$ 号点为根的一棵有根树,问每个点的子树中与它距离小于等于 $l$ 的点有多少个。
$1\leqslant n\leqslant2\times 10^5$

Solution:

以深度为下标建权值线段树,每次把子树的线段树合并到这个线段树上来,在线段树上查个前缀和。

Code:


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 200010
typedef long long ll;
ll l;
struct edge
{
int to,nxt;
ll v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,ll v)
{
++edgenum;e[edgenum].to = b;e[edgenum].v = v;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].v = v;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
struct node
{
int lc,rc;
int sum;
node(){sum = 0;}
}t[MAXN * 40];
int ptr = 0;
int newnode(){return ++ptr;}
int root[MAXN];
#define mid ((l + r) >> 1)
#define NEG 1ll
#define POS 1000000000000000000ll
void add(int &rt,ll p,ll l,ll r)
{
if(rt == 0)rt = newnode();
++t[rt].sum;
if(l == r)return;
if(p <= mid)add(t[rt].lc,p,l,mid);
else add(t[rt].rc,p,mid + 1,r);
return;
}
int query(int rt,ll L,ll R,ll l,ll r)
{
if(rt == 0)return 0;
if(L <= l && r <= R)return t[rt].sum;
int res = 0;
if(L <= mid)res += query(t[rt].lc,L,R,l,mid);
if(R > mid)res += query(t[rt].rc,L,R,mid + 1,r);
return res;
}
int merge(int x,int y,ll l,ll r)
{
if(x == 0 || y == 0)return x + y;
t[x].sum += t[y].sum;
if(l == r)return x;
t[x].lc = merge(t[x].lc,t[y].lc,l,mid);
t[x].rc = merge(t[x].rc,t[y].rc,mid + 1,r);
t[x].sum = t[t[x].lc].sum + t[t[x].rc].sum;
return x;
}
int ans[MAXN];
bool v[MAXN];
void dfs(int k,ll dep)
{
v[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
dfs(e[i].to,dep + e[i].v);
root[k] = merge(root[k],root[e[i].to],NEG,POS);
}
add(root[k],dep,NEG,POS);
ans[k] = query(root[k],1,min(dep + l,POS),NEG,POS);
return;
}
int main()
{
scanf("%d%lld",&n,&l);
int a;
ll b;
for(int i = 2;i <= n;++i)
{
scanf("%d%lld",&a,&b);
add(i,a,b);
}
dfs(1,1);
for(int i = 1;i <= n;++i)
{
printf("%d\n",ans[i]);
}
return 0;
}
Copyright © 2020 wjh15101051
ღゝ◡╹)ノ♡