卧薪尝胆,厚积薄发。
WC2013 平面图
Date: Tue Dec 18 20:29:17 CST 2018
In Category:
NoCategory
Description:
平面中有
$n$
个顶点和
$m$
条线段,线段只在端点处相交,且整个图联通,
$q$
次询问平面中两个点
$A$
和
$B$
画一条曲线连接
$A$
和
$B$
,要求穿过的直线段中权值最大的尽可能小。
$1\leqslant n\leqslant 10^5$
Solution:
套路题,先用最小左转法找出所有平面,然后把对偶图建出来,求出最小生成树,再然后把所有询问离线下来做点定位,然后就是查询最小生成树上路径最大值,用倍增即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#include<cctype>
#include<cstring>
using namespace std;
int n,m,l;
#define MAXN 200010
namespace Pla
{
struct point
{
double x,y;
double operator * (point b){return x * b.y - y * b.x;}
point operator - (point b){return (point){x - b.x,y - b.y};}
double angle(){return atan2(y,x);}
}p[MAXN];
struct vector
{
int x,y,val;
double k;
void pt(){cout << p[x].x << " " << p[x].y << " - " << p[y].x << " " << p[y].y << endl;}
}v[MAXN];
int vnum = 0;
void add(int a,int b,int val)
{
v[vnum] = (vector){a,b,val,(p[b] - p[a]).angle()};++vnum;
v[vnum] = (vector){b,a,val,(p[a] - p[b]).angle()};++vnum;
return;
}
struct cmp
{
bool operator ()(int a,int b){return v[a].k < v[b].k;}
};
set<int,cmp> s[MAXN];
bool vis[MAXN];
int stack[MAXN],top = 0;
int belong[MAXN],tot = 0;
void solve()
{
for(int i = 0;i < vnum;++i)s[v[i].x].insert(i);
for(int i = 0;i < vnum;++i)
{
if(vis[i])continue;
top = 0;
stack[++top] = i;vis[i] = true;
while(true)
{
set<int,cmp>::iterator it = s[v[stack[top]].y].find(stack[top] ^ 1);
++it;
if(it == s[v[stack[top]].y].end())it = s[v[stack[top]].y].begin();
if(vis[*it])break;
stack[++top] = *it;
vis[*it] = true;
}
double sum = 0;
for(int i = 1;i <= top;++i)sum += p[v[stack[i]].x] * p[v[stack[i]].y];
if(sum >= 0)continue;
++tot;
while(top)belong[stack[top--]] = tot;
}
return;
}
}
struct point
{
double x,y;
}p[MAXN];
struct query
{
int x,y;
}q[MAXN];
int qnum = 0;
void add(double a,double b,double c,double d)
{
++qnum;q[qnum] = (query){qnum * 2 - 1,qnum * 2};
p[qnum * 2 - 1] = (point){a,b};p[qnum * 2] = (point){c,d};
return;
}
namespace Loc
{
struct cmp
{
bool operator ()(int a,int b)
{
double x = max(Pla::p[Pla::v[a].x].x,Pla::p[Pla::v[b].x].x);
point ax = (point){Pla::p[Pla::v[a].x].x,Pla::p[Pla::v[a].x].y};
point ay = (point){Pla::p[Pla::v[a].y].x,Pla::p[Pla::v[a].y].y};
point bx = (point){Pla::p[Pla::v[b].x].x,Pla::p[Pla::v[b].x].y};
point by = (point){Pla::p[Pla::v[b].y].x,Pla::p[Pla::v[b].y].y};
double ya = (ay.y - ax.y) / (ay.x - ax.x) * (x - ax.x) + ax.y;
double yb = (by.y - bx.y) / (by.x - bx.x) * (x - bx.x) + bx.y;
if(fabs(ya - yb) >= 1e-4)return ya < yb;
else return (ay.y - ax.y) / (ay.x - ax.x) < (by.y - bx.y) / (by.x - bx.x);
}
};
set<int,cmp> s;
struct scanline
{
double x;
int id,type;
}sc[MAXN * 3];
int scancnt = 0;
bool cmp_x(scanline a,scanline b)
{
if(a.x != b.x)return a.x < b.x;
else return a.type < b.type;
}
int bel[MAXN];
void solve()
{
for(int i = 0;i < Pla::vnum;++i)
{
if(Pla::p[Pla::v[i].x].x >= Pla::p[Pla::v[i].y].x)continue;
sc[++scancnt] = (scanline){Pla::p[Pla::v[i].x].x,i,1};
sc[++scancnt] = (scanline){Pla::p[Pla::v[i].y].x,i,-1};
}
for(int i = 1;i <= 2 * l;++i)
{
sc[++scancnt] = (scanline){p[i].x,i,0};
}
sort(sc + 1,sc + 1 + scancnt,cmp_x);
for(int i = 1;i <= scancnt;++i)
{
if(sc[i].type == 1)
{//cout << "insert ";Pla::v[sc[i].id].pt();
s.insert(sc[i].id);
}
if(sc[i].type == -1)
{//cout << "erase ";Pla::v[sc[i].id].pt();
s.erase(sc[i].id);
}
if(sc[i].type == 0)
{
Pla::p[n + 1].x = p[sc[i].id].x;
Pla::p[n + 1].y = p[sc[i].id].y;
Pla::p[n + 2].x = p[sc[i].id].x + 1;
Pla::p[n + 2].y = p[sc[i].id].y;//cout << " -> " << p[sc[i].id].x << " " << p[sc[i].id].y << endl;
Pla::v[Pla::vnum].x = n + 1;Pla::v[Pla::vnum].y = n + 2;
set<int,cmp>::iterator it = s.upper_bound(Pla::vnum);
if(it == s.end())continue;
bel[sc[i].id] = Pla::belong[*it];
//cout << sc[i].id << " " << p[sc[i].id].x << " " << p[sc[i].id].y << " : ";Pla::v[*it].pt();
}
}
return;
}
}
namespace Doubling
{
struct edge
{
int to,nxt,v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,int c)
{
e[++edgenum] = (edge){b,lin[a],c};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b],c};lin[b] = edgenum;
return;
}
int f[MAXN][19],g[MAXN][19];
int dep[MAXN];
void dfs(int k,int depth)
{
dep[k] = depth;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == f[k][0])continue;
f[e[i].to][0] = k;
g[e[i].to][0] = e[i].v;
dfs(e[i].to,depth + 1);
}
return;
}
void build()
{
dfs(1,1);
for(int k = 1;k <= 18;++k)
{
for(int i = 1;i <= n;++i)
{
f[i][k] = f[f[i][k - 1]][k - 1];
g[i][k] = max(g[i][k - 1],g[f[i][k - 1]][k - 1]);
}
}
}
int query(int a,int b)
{
if(a == 0 || b == 0)return -1;
int res = 0;
if(dep[a] < dep[b])swap(a,b);
for(int k = 18;k >= 0;--k)
{
if(dep[f[a][k]] >= dep[b])
{
res = max(res,g[a][k]);
a = f[a][k];
}
}
if(a == b)return res;
for(int k = 18;k >= 0;--k)
{
if(f[a][k] != f[b][k])
{
res = max(res,max(g[a][k],g[b][k]));
a = f[a][k];b = f[b][k];
}
}
return max(res,max(g[a][0],g[b][0]));
}
}
namespace Kruskal
{
int f[MAXN];
int find(int x){return (x == f[x] ? x : f[x] = find(f[x]));}
struct edges
{
int u,v,w;
}es[MAXN];
bool cmp_w(edges a,edges b){return a.w < b.w;}
int edgenum = 0;
void add(int a,int b,int c)
{
es[++edgenum] = (edges){a,b,c};
return;
}
void solve()
{
for(int i = 1;i <= Pla::tot;++i)f[i] = i;
sort(es + 1,es + 1 + edgenum,cmp_w);
for(int i = 1;i <= edgenum;++i)
{
if(find(es[i].u) == find(es[i].v))continue;
Doubling::add(es[i].u,es[i].v,es[i].w);
f[find(es[i].u)] = find(es[i].v);
}
return;
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)scanf("%lf%lf",&Pla::p[i].x,&Pla::p[i].y);
int x,y,v;
for(int i = 1;i <= m;++i)
{
scanf("%d%d%d",&x,&y,&v);
Pla::add(x,y,v);
}
Pla::solve();
scanf("%d",&l);
double a,b,c,d;
for(int i = 1;i <= l;++i)
{
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
add(a,b,c,d);
}
Loc::solve();
for(int i = 0;i < Pla::vnum;++i)
{
if(Pla::belong[i] == 0 || Pla::belong[i ^ 1] == 0)continue;
Kruskal::add(Pla::belong[i],Pla::belong[i ^ 1],Pla::v[i].val);
}
Kruskal::solve();
Doubling::build();
for(int i = 1;i <= l;++i)
{
printf("%d\n",Doubling::query(Loc::bel[q[i].x],Loc::bel[q[i].y]));
}
return 0;
}
In tag:
数学-计算几何-平面图-最小左转法 数学-计算几何-平面图-点定位
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡