卧薪尝胆,厚积薄发。
WC2013 糖果公园
Date: Sun Nov 18 16:26:54 CST 2018
In Category:
NoCategory
Description:
一条路径的价值为路径上的所有点的数字的出现次数的权重乘这个数字的价值,支持修改点上的数字,查询一条链的价值。
$1\leqslant n\leqslant 10^5$
Solution:
树上带修莫队。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
#define R register
inline int rd()
{
R int res = 0,f = 1;
R char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m,s;
#define MAXN 100010
int val[MAXN],wei[MAXN],type[MAXN],type_[MAXN];
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int dep[MAXN],top[MAXN],siz[MAXN],son[MAXN],fa[MAXN];
int ind[MAXN],oud[MAXN],pnt[MAXN << 1],tot = 0;
void dfs1(int k,int depth)
{
dep[k] = depth;
siz[k] = 1;
ind[k] = ++tot;pnt[tot] = k;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k])
{
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])
{
son[k] = e[i].to;
}
}
}
oud[k] = ++tot;pnt[tot] = k;
return;
}
void dfs2(int k,int tp)
{
top[k] = tp;
if(son[k] == 0)return;
dfs2(son[k],tp);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fa[top[a]];
}
return (dep[a] < dep[b] ? a : b);
}
struct change
{
int tim,pos,pre,val;
}c[MAXN];
int ctot = 0;
struct query
{
int tim,l,r,k;
long long ans;
}q[MAXN];
int qtot = 0;
int pos[MAXN << 1];
bool cmp(query a,query b)
{
if(pos[a.l] != pos[b.l])return pos[a.l] < pos[b.l];
if(pos[a.r] != pos[b.r])return pos[a.r] < pos[b.r];
return a.tim < b.tim;
}
bool cmp_tim(query a,query b){return a.tim < b.tim;}
int cnt[MAXN];
long long ans = 0;
void add(int k)
{
int w = type[k];
++cnt[w];
ans += 1ll * val[w] * wei[cnt[w]];
return;
}
void rem(int k)
{
int w = type[k];
ans -= 1ll * val[w] * wei[cnt[w]];
--cnt[w];
return;
}
int vis[MAXN];
void set(int k)
{
if(vis[k] == 1)rem(k);
if(vis[k] == 0)add(k);
vis[k] ^= 1;
return;
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for(R int i = 1;i <= m;++i)val[i] = rd();
for(R int i = 1;i <= n;++i)wei[i] = rd();
R int a,b;
for(R int i = 1;i < n;++i)
{
a = rd();b = rd();
add(a,b);
}
for(R int i = 1;i <= n;++i)type_[i] = type[i] = rd();
dfs1(1,1);dfs2(1,1);
R int opt,x,y;
for(R int i = 1;i <= s;++i)
{
opt = rd();x = rd();y = rd();
if(opt == 0)
{
c[++ctot] = (change){i,x,type_[x],y};
type_[x] = y;
}
else
{
++qtot;
q[qtot].tim = i;
R int lca = LCA(x,y);
if(lca == x || lca == y)
{
q[qtot].l = ind[x];
q[qtot].r = ind[y];
if(q[qtot].l > q[qtot].r)swap(q[qtot].l,q[qtot].r);
q[qtot].k = -1;
}
else
{
if(ind[x] > ind[y])swap(x,y);
q[qtot].l = oud[x];q[qtot].r = ind[y];
q[qtot].k = lca;
}
}
}
int blo = pow(tot,0.66666666666);
for(int i = 1;i <= tot;++i)pos[i] = (i - 1) / blo + 1;
sort(q + 1,q + 1 + qtot,cmp);
for(int i = 1,l = 1,r = 0,ptr = 0;i <= qtot;++i)
{
for(;ptr != ctot && c[ptr + 1].tim < q[i].tim;)
{
++ptr;
if(l <= ind[c[ptr].pos] && ind[c[ptr].pos] <= r)set(c[ptr].pos);
if(l <= oud[c[ptr].pos] && oud[c[ptr].pos] <= r)set(c[ptr].pos);
type[c[ptr].pos] = c[ptr].val;
if(l <= ind[c[ptr].pos] && ind[c[ptr].pos] <= r)set(c[ptr].pos);
if(l <= oud[c[ptr].pos] && oud[c[ptr].pos] <= r)set(c[ptr].pos);
}
for(;c[ptr].tim > q[i].tim;)
{
if(l <= ind[c[ptr].pos] && ind[c[ptr].pos] <= r)set(c[ptr].pos);
if(l <= oud[c[ptr].pos] && oud[c[ptr].pos] <= r)set(c[ptr].pos);
type[c[ptr].pos] = c[ptr].pre;
if(l <= ind[c[ptr].pos] && ind[c[ptr].pos] <= r)set(c[ptr].pos);
if(l <= oud[c[ptr].pos] && oud[c[ptr].pos] <= r)set(c[ptr].pos);
--ptr;
}
for(;l > q[i].l;--l)set(pnt[l - 1]);
for(;r < q[i].r;++r)set(pnt[r + 1]);
for(;l < q[i].l;++l)set(pnt[l]);
for(;r > q[i].r;--r)set(pnt[r]);
if(q[i].k != -1)set(q[i].k);
q[i].ans = ans;
if(q[i].k != -1)set(q[i].k);
}
sort(q + 1,q + 1 + qtot,cmp_tim);
for(int i = 1;i <= qtot;++i)printf("%lld\n",q[i].ans);
return 0;
}
In tag:
数据结构-莫队
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡