卧薪尝胆,厚积薄发。
SDOI2013 森林
Date: Sun Jun 03 11:47:45 CST 2018
In Category:
NoCategory
Description:
连边
$+$
询问路径第
$K$
小,保证任何时刻图是森林。
$1\le N\le 80000$
Solution:
第
$K$
小想到主席树,但主席树是静态的,无法支持连边操作,但看数据范围只有
$80000$
,可以每次连边时用启发式合并的思想,暴力将
$siz$
小的树中的点挂到另一个树上去,在加点时从父亲继承下来一个版本,在这个版本上加入这个点的值,
$LCA$
也必须动态求,显然链剖和
$tarjan$
都不能用,在挂点时一边
$dfs$
一边重新计算倍增数组,询问时树上查分即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#define mid ((l + r) >> 1)
using namespace std;
char getc()
{
char c = getchar();
while(c != 'Q' && c != 'L')c = getchar();
return c;
}
int read()
{
int res = 0;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while('0' <= c && c <= '9')
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int testcase;
int n,m,q;
#define MAXN 80001
int siz[MAXN],fa[MAXN],val[MAXN],depth[MAXN];
map<int,int> tr;
int to[MAXN],s[MAXN],tot = 0;
int find(int x){return (x == fa[x] ? x : fa[x] = find(fa[x]));}
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
++edgenum;
e[edgenum].to = b;
e[edgenum].nxt = lin[a];
lin[a] = edgenum;
return;
}
bool v[MAXN];
int f[MAXN][17];
struct node
{
int c[2],sum;
node(){c[0] = c[1] = sum = 0;}
}t[MAXN * 500];
int ptr = 0;
int newnode(){return ++ptr;}
int root[MAXN];
void insert(int &rt,int rt_,int p,int l,int r)
{
rt = newnode();
t[rt] = t[rt_];
t[rt].sum += 1;
if(l == r)return;
if(p <= mid)insert(t[rt].c[0],t[rt_].c[0],p,l,mid);
else insert(t[rt].c[1],t[rt_].c[1],p,mid + 1,r);
return;
}
void dfs(int k)
{
v[k] = true;
for(int i = 1;i <= 16;++i)
{
f[k][i] = f[f[k][i - 1]][i - 1];
}
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != f[k][0])
{
f[e[i].to][0] = k;depth[e[i].to] = depth[k] + 1;
insert(root[e[i].to],root[k],tr[val[e[i].to]],1,tot);
dfs(e[i].to);
}
}
return;
}
void merge(int a,int b)
{
add(a,b);add(b,a);
int p = find(a),q = find(b);
if(siz[p] > siz[q])
{
swap(p,q);swap(a,b);
}
fa[p] = q;
siz[q] += siz[p];
f[a][0] = b;
depth[a] = depth[b] + 1;
insert(root[a],root[b],tr[val[a]],1,tot);
dfs(a);
return;
}
int LCA(int a,int b)
{
if(depth[a] < depth[b])swap(a,b);
for(int i = 16;i >= 0;--i)
{
if(depth[f[a][i]] >= depth[b])
{
a = f[a][i];
}
}
if(a == b)return a;
for(int i = 16;i >= 0;--i)
{
if(f[a][i] != f[b][i])
{
a = f[a][i];b = f[b][i];
}
}
return f[a][0];
}
int main()
{
scanf("%d",&testcase);
scanf("%d%d%d",&n,&m,&q);
memset(f,0,sizeof(f));
for(int i = 1;i <= n;++i)
{
siz[i] = 1;fa[i] = i;depth[i] = 1;
val[i] = read();s[i] = val[i];
}
sort(s + 1,s + 1 + n);
for(int i = 1;i <= n;++i)
{
if(s[i] != s[i - 1])
{
tr[s[i]] = ++tot;
to[tot] = s[i];
}
}
for(int i = 1;i <= n;++i)
{
insert(root[i],0,tr[val[i]],1,tot);
}
int a,b;
for(int i = 1;i <= m;++i)
{
a = read();b = read();
merge(a,b);
}
memset(v,false,sizeof(v));
for(int i = 1;i <= n;++i)
{
if(!v[i])
{
dfs(i);
}
}
int lastans = 0;
char c;
int x,y,k;
int a1,a2,a3,a4;
for(int i = 1;i <= q;++i)
{
c = getc();
if(c == 'Q')
{
x = read();y = read();k = read();
x ^= lastans;y ^= lastans;k ^= lastans;//cout << x << " " << y << " " << k << endl;
int lca = LCA(x,y);//cout << " : " << x << " " << y << " " << lca << endl;
a1 = root[x];a2 = root[y];a3 = root[lca];a4 = root[f[lca][0]];//cout << t[a1].sum << " " << t[a2].sum << " " << t[a3].sum << " " << t[a4].sum << endl;
int l = 1,r = tot;
int tmp;
while(l < r)
{
tmp = t[t[a1].c[0]].sum + t[t[a2].c[0]].sum - t[t[a3].c[0]].sum - t[t[a4].c[0]].sum;
if(k <= tmp)
{
a1 = t[a1].c[0];a2 = t[a2].c[0];a3 = t[a3].c[0];a4 = t[a4].c[0];
r = ((l + r) >> 1);
}
else
{
a1 = t[a1].c[1];a2 = t[a2].c[1];a3 = t[a3].c[1];a4 = t[a4].c[1];
l = ((l + r) >> 1) + 1;
k -= tmp;
}
}
printf("%d\n",lastans = to[l]);
}
else
{
x = read();y = read();
x ^= lastans;y ^= lastans;//cout << x << " " << y << endl;
merge(x,y);
}
}
return 0;
}
In tag:
数据结构-主席树 数据结构-启发式合并
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡