卧薪尝胆,厚积薄发。
SDOI2013 费用流
Date: Wed Mar 20 16:53:21 CST 2019
In Category:
NoCategory
Description:
给一个网络流图,
$A$
给出一个最大流,
$B$
再每条边上分配花费,要求所有边花费之和为
$P$
,
$A$
希望总费用尽量小,
$B$
希望尽量大,求这个费用。
$1\leqslant n\leqslant 10^2,1\leqslant m\leqslant 10^3$
Solution:
首先对于
$B$
最值的显然是把所有费用都放到最大流量的边上,于是我们希望最大流最小,二分
$+dinic$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
int n,m,p;
#define MAXN 110
#define MAXM 1010
struct edges
{
int u,v,w;
}es[MAXM];
struct edge
{
int to,nxt;
double f;
}e[MAXM * 2];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,double f)
{
e[edgenum] = (edge){b,lin[a],f};lin[a] = edgenum++;
e[edgenum] = (edge){a,lin[b],0};lin[b] = edgenum++;
return;
}
#define INF 0x3f3f3f3f
int s,t;
int ch[MAXN];
bool BFS()
{
memset(ch,-1,sizeof(ch));ch[s] = 0;
queue<int> q;q.push(s);
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(ch[e[i].to] == -1 && e[i].f > 0)
{
ch[e[i].to] = ch[k] + 1;
q.push(e[i].to);
}
}
}
return (ch[t] != -1);
}
double flow(int k,double f)
{
if(k == t)return f;
double r = 0;
for(int i = lin[k];i != -1 && f > r;i = e[i].nxt)
{
if(ch[e[i].to] == ch[k] + 1 && e[i].f > 0)
{
double l = flow(e[i].to,min(e[i].f,f - r));
e[i].f -= l;r += l;e[i ^ 1].f += l;
}
}
if(r == 0)ch[k] = -1;
return r;
}
#define INF 0x3f3f3f3f
double dinic()
{
double ans = 0,r;
while(BFS())while(r = flow(s,1000000000))ans += r;//cout << ans << endl;
return ans;
}
void build(double val)
{
memset(lin,-1,sizeof(lin));
edgenum = 0;
for(int i = 1;i <= m;++i)
{
add(es[i].u,es[i].v,min(1.0 * es[i].w,val));
}
return;
}
int main()
{
scanf("%d%d%d",&n,&m,&p);
for(int i = 1;i <= m;++i)
{
scanf("%d%d%d",&es[i].u,&es[i].v,&es[i].w);
}
s = 1;t = n;
build(1000000000);
int maxflow = dinic();
double l = 0,r = 1000000000,mid;
while(r - l > 1e-8)
{
mid = (l + r) / 2;
build(mid);
if(dinic() == maxflow)r = mid;
else l = mid;
}
cout << maxflow << endl;
printf("%.10lf\n",l * p);
return 0;
}
In tag:
数学-博弈论-纳什均衡 图论-dinic
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡