卧薪尝胆,厚积薄发。
SDOI2013 保护出题人
Date: Wed Apr 03 17:11:57 CST 2019
In Category:
NoCategory
Description:
植物大战僵尸每一关都会在队头新加一个僵尸并改变改变对头位置,每一关都可以换不同攻击力的豌豆射手,问攻击力总和的最小值是多少。
$1\leqslant n\leqslant 10^5$
Solution:
设
$f[i]$
表示第
$i$
关所用的豌豆射手,那么有:
$$
f[i]=\max_{p=1}^i(\frac{sum[i]-sum[p-1]}{d\times(i-p)+x_i}),ans=\sum_{i=1}^n f[i]
$$
那么:
$$
f[i]=\max_{p=1}^i(\frac{sum[i]-sum[p-1]}{d\times i+x_i-d\times p})
$$
可以看成是定点
$(d\times i+x_i,sum[i])$
向
$(d\times p,sum[p-1])$
的最大斜率,因此我们求出凸包之后三分就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n;
typedef long long ll;
ll d;
#define MAXN 100010
struct point
{
ll x,y;
}p[MAXN];
ll sum[MAXN];
double f[MAXN];
point stack[MAXN];
int top = 0;
double slope(point a,point b){return 1.0 * (a.y - b.y) / (a.x - b.x);}
int main()
{
scanf("%d%lld",&n,&d);
ll a,x;
double ans = 0;
for(int i = 1;i <= n;++i)
{
scanf("%lld%lld",&a,&x);
sum[i] = sum[i - 1] + a;
p[i].x = d * i;
p[i].y = sum[i - 1];
while(top >= 2 && slope(stack[top - 1],stack[top]) >= slope(stack[top],p[i]))--top;
stack[++top] = p[i];
int l = 1,r = top,midl,midr;
point t = (point){d * i + x,sum[i]};
while(l <= r)
{
int len = (r - l + 3) / 3;
midl = l + len - 1;midr = r - len + 1;
double ansl = slope(t,stack[midl]);
double ansr = slope(t,stack[midr]);
f[i] = max(f[i],max(ansl,ansr));
if(ansl > ansr)r = midr - 1;
else l = midl + 1;
}
ans += f[i];
}
printf("%.0lf\n",ans);
return 0;
}
In tag:
数学-计算几何-凸包 算法-三分
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡