卧薪尝胆,厚积薄发。
USACO2014MAR GOLD Sabotage
Date: Wed Sep 12 20:14:00 CST 2018
In Category:
NoCategory
Description:
有一个序列,删除一个区间使得剩余的数的平均值最小。
$1\le n \le 100000$
Solution:
$01$
分数规划,设二分出来的值是
$x$
,那么如果
$\frac{sum[n]-(sum[i]-sum[j])}{n-(i-j)}\le x$
,就把右端点往左调,乘过去移项得:
$(sum[n]-n\times x)-(sum[i]-i\times x)+(sum[j]-j\times x)\le 0$
,于是维护
$sum[j]-j\times x$
的最小值就可以判断了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n;
#define MAXN 100010
double val[MAXN];
double sum[MAXN];
bool check(double x)
{
double presum = 10000000000;
for(int i = 1;i < n;++i)
{
if(sum[n] - n * x - (sum[i] - i * x) + presum <= 0)
{
return true;
}
presum = min(presum,sum[i] - i * x);
}
return false;
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)scanf("%lf",&val[i]);
for(int i = 1;i <= n;++i)sum[i] = sum[i - 1] + val[i];
double l = 0,r = 10000000000,mid;
while(r - l > 1e-6)
{
mid = (l + r) / 2;
if(check(mid))r = mid;
else l = mid;
}
printf("%.3lf\n",l);
return 0;
}
In tag:
算法-01分数规划
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡