卧薪尝胆,厚积薄发。
CODECHEF COUNTARI
Date: Wed Nov 28 20:52:22 CST 2018
In Category:
NoCategory
Description:
给定一个长度为
$N$
的数组
$A[]$
,求有多少对
$i,j,k$
(
$1\leqslant i<j<k\leqslant N$
)满足
$A[k]-A[j]=A[j]-A[i]$
。
$1\leqslant n\leqslant 10^5,1\leqslant a[i]\leqslant 30000$
Solution:
移个项就是
$a[j]=a[i]+a[k]$
,那么一个暴力思路是枚举每个位置作为
$j$
,把两边的生成函数乘起来累加答案,这样做是
$O(nA\log A)$
的。
考虑怎么降低
$FFT$
的次数,
$n\leqslant 10^5$
意味着我们可以用一些看上去不太优秀的做法。可以根号分治,每根号个分一块,然后对于有两个在同一块里的暴力做,否则把两边的生成函数
$FFT$
起来累加答案。
.需要一些卡常,比如
$f$
数组只用开到
$65536$
,由于
$FFT$
常数巨大所以要把块开大一点,大概开
$50$
个块就可以了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n;
#define MAXN 100010
int v[MAXN];
#define MAXV 65538
#define MAXB 51
#define BLO 2000
struct comp
{
double r,i;
comp(double r_ = 0.0,double i_ = 0.0){r = r_;i = i_;}
};
comp operator + (comp a,comp b){return (comp){a.r + b.r,a.i + b.i};}
comp operator - (comp a,comp b){return (comp){a.r - b.r,a.i - b.i};}
comp operator * (comp a,comp b){return (comp){a.r * b.r - a.i * b.i,a.r * b.i + a.i * b.r};}
int rev[MAXV];
const double PI = acos(-1);
struct poly
{
comp f[MAXV];
int len;
inline void FFT(comp f[],int l,int type)
{
for(register int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(register int i = 2;i <= l;i = i << 1)
{
register comp wn = (comp){cos(-type * 2 * PI / i),sin(-type * 2 * PI / i)};
for(register int j = 0;j < l;j += i)
{
register comp w = (comp){1,0};
for(register int k = j;k < j + i / 2;++k)
{
register comp u = f[k],t = w * f[k + i / 2];
f[k] = u + t;
f[k + i / 2] = u - t;
w = w * wn;
}
}
}
if(type == -1)
{
for(register int i = 0;i < l;++i)f[i].r /= l;
}
return;
}
friend poly operator + (poly a,poly b)
{
register int l = max(a.len,b.len);
for(register int i = 0;i < l;++i)a.f[i] = a.f[i] + b.f[i];
a.len = l;
return a;
}
friend poly operator * (poly a,poly b)
{
register int n = max(a.len,b.len);
register int l = 0,len = 1;
for(;len < (n << 1);len = len << 1,++l);
for(register int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
a.FFT(a.f,len,1);b.FFT(b.f,len,1);
for(register int i = 0;i < len;++i)a.f[i] = a.f[i] * b.f[i];
a.FFT(a.f,len,-1);
while(int(a.f[len - 1].r + 0.5) == 0)--len;
a.len = len;
return a;
}
}pre[MAXB],suf[MAXB];
#define V 30010
int cnt[V];
int block,pos[MAXN];
int lef[MAXB],rig[MAXB];
int main()
{
scanf("%d",&n);
for(register int i = 1;i <= n;++i)v[i] = rd();
register int blo = BLO;
memset(lef,0x3f,sizeof(lef));
for(register int i = 1;i <= n;++i)
{
pos[i] = (i - 1) / blo + 1;
}
block = pos[n];
for(int i = 1;i <= block;++i)
{
lef[i] = (i - 1) * blo + 1;
rig[i] = i * blo;
}
rig[block] = n;
register long long ans = 0;
for(register int i = 1;i <= block;++i)
{
for(register int j = lef[i];j <= rig[i];++j)for(register int k = j + 1;k <= rig[i];++k)
if(0 <= 2 * v[j] - v[k] && 2 * v[j] - v[k] < V)ans += cnt[2 * v[j] - v[k]];
for(register int j = lef[i];j <= rig[i];++j)++cnt[v[j]];
}
memset(cnt,0,sizeof(cnt));
for(register int i = block;i >= 1;--i)
{
for(register int j = rig[i];j >= lef[i];--j)for(register int k = j - 1;k >= lef[i];--k)
if(0 <= 2 * v[j] - v[k] && 2 * v[j] - v[k] < V)ans += cnt[2 * v[j] - v[k]];
for(register int j = lef[i];j <= rig[i];++j)++cnt[v[j]];
}
memset(cnt,0,sizeof(cnt));
for(register int i = 1;i <= block;++i)
{
for(register int j = lef[i];j <= rig[i];++j)
{
for(register int k = j + 1;k <= rig[i];++k)
{
if(0 <= 2 * v[j] - v[k] && 2 * v[j] - v[k] < V)ans += cnt[2 * v[j] - v[k]];
}
++cnt[v[j]];
}
for(register int j = lef[i];j <= rig[i];++j)cnt[v[j]] = 0;
}
for(register int i = 1;i <= block;++i)
{
if(i != 1)pre[i] = pre[i - 1];
for(register int j = lef[i];j <= rig[i];++j)
{
++pre[i].f[v[j]].r;
pre[i].len = max(pre[i].len,v[j] + 1);
}
}
for(register int i = block;i >= 1;--i)
{
if(i != block)suf[i] = suf[i + 1];
for(register int j = lef[i];j <= rig[i];++j)
{
++suf[i].f[v[j]].r;
suf[i].len = max(suf[i].len,v[j] + 1);
}
}
poly k;
for(register int i = 2;i < block;++i)
{
k = pre[i - 1] * suf[i + 1];
for(register int j = lef[i];j <= rig[i];++j)
{
ans += int(k.f[2 * v[j]].r + 0.5);
}
}
cout << ans << endl;
return 0;
}
In tag:
数据结构-根号分治 数学-多项式-快速傅里叶变换
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡