卧薪尝胆,厚积薄发。
首都
Date: Fri Jan 18 07:20:49 CST 2019
In Category:
NoCategory
Description:
刚开始有
$n$
个点,然后可能会在两个点间连边,询问某个联通块的重心,或者查询所有重心的异或和。
$1\leqslant n\leqslant 10^5$
Solution:
考虑合并两个联通块时重心的变化,一种做法是由于加一个点重心最多只移动
$1$
,因此可以启发式合并,另一种方法是最后的重心一定在原来的两个重心的链上,因此在这条链上二分就行了。
注意思考
$LCT$
维护子树和的时候辅助树的一棵子树代表了什么。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
inline char getc()
{
register char c = getchar();
while(!isalpha(c))c = getchar();
while(isalpha(getchar()));
return c;
}
int n,m;
#define MAXN 100010
struct node
{
int c[2],fa;
int sum,tot;
bool rev;
}t[MAXN];
bool isroot(int k){return (t[t[k].fa].c[0] != k && t[t[k].fa].c[1] != k);}
int id(int k){return (t[t[k].fa].c[0] == k ? 0 : 1);}
void connect(int k,int f,int p){t[k].fa = f;t[f].c[p] = k;return;}
void maintain(int rt){t[rt].sum = t[t[rt].c[0]].sum + t[t[rt].c[1]].sum + t[rt].tot + 1;return;}
void rotate(int x)
{
int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
if(!isroot(y))t[z].c[fy] = x;
t[x].fa = z;
connect(t[x].c[fx ^ 1],y,fx);
connect(y,x,fx ^ 1);
maintain(y);maintain(x);
return;
}
void pushdown(int rt)
{
if(t[rt].rev)
{
t[t[rt].c[0]].rev ^= 1;t[t[rt].c[1]].rev ^= 1;
swap(t[rt].c[0],t[rt].c[1]);t[rt].rev = false;
}
return;
}
stack<int> s;
void splay(int x)
{
s.push(x);
for(int i = x;!isroot(i);i = t[i].fa)s.push(t[i].fa);
while(!s.empty()){pushdown(s.top());s.pop();}
while(!isroot(x))
{
int y = t[x].fa;
if(isroot(y)){rotate(x);break;}
if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
return;
}
void access(int k)
{
for(int i = 0;k;i = k,k = t[k].fa)
{
splay(k);
t[k].tot += t[t[k].c[1]].sum;
t[k].c[1] = i;
t[k].tot -= t[t[k].c[1]].sum;
maintain(k);
}
return;
}
void makeroot(int k){access(k);splay(k);t[k].rev ^= 1;return;}
void split(int x,int y){makeroot(x);access(y);splay(y);return;}
void link(int k,int f){split(k,f);t[k].fa = f;t[f].tot += t[k].sum;maintain(f);return;}
int cen[MAXN];
int f[MAXN];
int find(int x){return (x == f[x] ? x : f[x] = find(f[x]));}
int search(int rt)
{
int lsum = 0,rsum = 0,half = t[rt].sum / 2,tag = t[rt].sum & 1,now = 2e9,ls,rs;
while(rt)
{
pushdown(rt);
ls = lsum + t[t[rt].c[0]].sum;rs = rsum + t[t[rt].c[1]].sum;
if(ls <= half && rs <= half)
{
if(tag){now = rt;break;}
else if(rt < now)now = rt;
}
if(ls < rs)lsum += t[t[rt].c[0]].sum + t[rt].tot + 1,rt = t[rt].c[1];
else rsum += t[t[rt].c[1]].sum + t[rt].tot + 1,rt = t[rt].c[0];
}
return now;
}
int ans = 0;
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
{
f[i] = i;cen[i] = i;
ans ^= i;t[i].sum = 1;
}
char opt;
int x,y;
for(int i = 1;i <= m;++i)
{
opt = getc();
if(opt == 'X')printf("%d\n",ans);
if(opt == 'Q')
{
x = rd();
printf("%d\n",cen[find(x)]);
}
if(opt == 'A')
{
x = rd();y = rd();
int a = cen[find(x)],b = cen[find(y)];
link(x,y);split(a,b);int cc = search(b);
f[find(x)] = find(y);
cen[find(y)] = cc;
ans = ans ^ a ^ b ^ cc;
}
}
return 0;
}
In tag:
数据结构-LCT
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡