卧薪尝胆,厚积薄发。
SDOI2014 LIS
Date: Thu Mar 21 10:30:06 CST 2019
In Category:
NoCategory
Description:
给定序列
$A$
,第
$i$
项有删除代价
$B_i$
和附加属性
$C_i$
,删除若干项使得
$A$
的最长上升子序列长度减一,要求付出代价之和最小并输出方案。
$1\leqslant n\leqslant 700$
Solution:
首先不难看出来是一个最小割,如果没有后面那个字典序最小的话就是一个最小费用最大流,考虑怎么求。
我们可以按字典序枚举所有的边,并判断这条边是不是最小割可行边,可行边的条件是
$(u,v)$
满流并且不存在
$u\to v$
的增广路径,于是我们就看一看在残量网络上能否从
$u$
到
$v$
,如果他是可行边,那么久把他加到集合里,但是这样有一个问题,就是可能会选到一条流上的两条边,于是我们在选完一条边后需要把这条边上的流量去掉,具体做法也很简单,就从
$u\to S,v\to T$
跑最大流即可,这样经过这条边的所有流都被删掉了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n;
#define MAXN 710
int A[MAXN],B[MAXN],C[MAXN];
int id[MAXN];
int f[MAXN];
#define MAXP (MAXN * 2)
#define MAXE (MAXN * MAXN + 3 * MAXN)
struct edge
{
int to,nxt,f;
}e[MAXE << 1];
int edgenum = 0;
int lin[MAXP] = {0};
void add(int a,int b,int f)
{//cout << a << " " << b << " " << f << endl;
e[edgenum] = (edge){b,lin[a],f};lin[a] = edgenum++;
e[edgenum] = (edge){a,lin[b],0};lin[b] = edgenum++;
return;
}
int S,T;
int s,t;
#define INF 0x3f3f3f3f
int p[MAXN];
int ch[MAXP];
bool BFS()
{
memset(ch,-1,sizeof(ch));ch[s] = 0;
queue<int> q;q.push(s);
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(ch[e[i].to] == -1 && e[i].f)
{
ch[e[i].to] = ch[k] + 1;
q.push(e[i].to);
}
}
}
return (ch[t] != -1);
}
int flow(int k,int f)
{
if(k == t)return f;
int r = 0;
for(int i = lin[k];i != -1 && f > r;i = e[i].nxt)
{
if(ch[e[i].to] == ch[k] + 1 && e[i].f)
{
int l = flow(e[i].to,min(e[i].f,f - r));
e[i].f -= l;r += l;e[i ^ 1].f += l;
}
}
if(r == 0)ch[k] = -1;
return r;
}
int dinic()
{
int ans = 0,r;
while(BFS())while(r = flow(s,INF))ans += r;
return ans;
}
bool tag[MAXP];
bool BFS(int k,int t)
{
tag[k] = true;
if(k == t)return true;
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(e[i].f == 0 || tag[e[i].to])continue;
if(BFS(e[i].to,t))return true;
}
return false;
}
bool check(int s,int t)
{
bool res = BFS(s,t);
memset(tag,false,sizeof(tag));
return res;
}
void pushflow(int u,int v)
{
s = u;t = S;
dinic();
s = T;t = v;
dinic();
return;
}
bool cmp_C(int a,int b){return C[a] < C[b];}
void work()
{
edgenum = 0;
memset(lin,-1,sizeof(lin));
scanf("%d",&n);
for(int i = 1;i <= n;++i)A[i] = rd();
for(int i = 1;i <= n;++i)B[i] = rd();
for(int i = 1;i <= n;++i)C[i] = rd();
for(int i = 1;i <= n;++i)id[i] = i;
sort(id + 1,id + 1 + n,cmp_C);
memset(f,0,sizeof(f));
for(int i = 1;i <= n;++i)for(int j = 0;j <= i;++j)if(A[j] < A[i])f[i] = max(f[i],f[j] + 1);
//for(int i = 1;i <= n;++i)cout << f[i] << " ";cout << endl;
int len = 0;
for(int i = 1;i <= n;++i)len = max(len,f[i]);
S = s = 2 * n + 1;T = t = s + 1;
for(int i = 1;i <= n;++i)add(2 * i - 1,2 * i,B[i]);
for(int i = 1;i <= n;++i)if(f[i] == 1)add(s,2 * i - 1,INF);
for(int i = 1;i <= n;++i)if(f[i] == len)add(2 * i,t,INF);
for(int i = 1;i <= n;++i)for(int j = i + 1;j <= n;++j)
if(A[i] < A[j] && f[i] + 1 == f[j])add(i * 2,j * 2 - 1,INF);
int ans1 = dinic();
int ans2 = 0;
p[0] = 0;
for(int i = 1;i <= n;++i)
{
int k = id[i];
if(!check(k * 2 - 1,k * 2))
{
++ans2;
p[++p[0]] = k;
pushflow(k * 2 - 1,k * 2);
}
}
cout << ans1 << " " << ans2 << endl;
sort(p + 1,p + 1 + p[0]);
for(int i = 1;i <= p[0];++i)cout << p[i] << " ";cout << endl;
return;
}
int main()
{
int testcases = rd();
while(testcases--)work();
return 0;
}
In tag:
图论-网络流-最小割 图论-网络流-最小费用最大流
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡