卧薪尝胆,厚积薄发。
ONTAK2010 Peaks加强版
Date: Tue Nov 20 10:56:25 CST 2018
In Category:
NoCategory
Description:
有
$N$
座山峰,山峰有高度
$h_i$
。共
$M$
条路径,每条路径有一个困难值,现在有
$Q$
组询问,询问从点
$v$
开始只经过困难值小于等于
$x$
的路径所能到达的山峰中第
$k$
高的山峰,如果无解输出
$-1$
。强制在线。
$1\leqslant n\leqslant 10^5,1\leqslant m,q\leqslant 5\times 10^5$
Solution:
和NOI2018归程类似,先建出
$Kruskal$
重构树,求出
$dfs$
序后就变成了求区间第
$k$
大,主席树即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m,q;
#define MAXN 200010
#define MAXM 500010
struct edges
{
int u,v,w;
}es[MAXM];
int h[MAXN];
int tot = 0;
namespace UFS{
int f[MAXN];
int find(int x){return (x == f[x] ? x : f[x] = find(f[x]));}
void init()
{
for(int i = 1;i <= n;++i)f[i] = i;
return;
}
}
namespace Tree{
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int val[MAXN],rnk[MAXN],pos[MAXN],siz[MAXN],th = 0;
}
namespace Kruskal{
using namespace Tree;
using namespace UFS;
bool v[MAXN];
bool cmp_w(edges a,edges b){return a.w < b.w;}
void build()
{
init();
sort(es + 1,es + 1 + m,cmp_w);
tot = n;
for(int i = 1;i <= m;++i)
{
int p = find(es[i].u),q = find(es[i].v);
if(p == q)continue;
++tot;
f[p] = f[q] = f[tot] = tot;
add(p,tot);add(q,tot);
val[tot] = es[i].w;
}
return;
}
}
namespace Doubling{
int f[MAXN][20],g[MAXN][20];
bool v[MAXN];
using namespace Tree;
void dfs(int k)
{
v[k] = true;
rnk[k] = ++th;pos[th] = k;
siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
dfs(e[i].to);
f[e[i].to][0] = k;
g[e[i].to][0] = val[k];
siz[k] += siz[e[i].to];
}
return;
}
void build()
{
for(int i = tot;i >= 1;--i)
{
if(!v[i])dfs(i);
}
for(int k = 1;k <= 19;++k)
{
for(int i = 1;i <= tot;++i)
{
g[i][k] = max(g[i][k - 1],g[f[i][k - 1]][k - 1]);
f[i][k] = f[f[i][k - 1]][k - 1];
}
}
return;
}
int calc(int p,int h)
{
int pos = p;
for(int i = 19;i >= 0;--i)
{
if(f[pos][i] != 0 && g[pos][i] <= h)
{
pos = f[pos][i];
}
}
return pos;
}
}
int v[MAXN],N = 0;
namespace Discretize
{
int b[MAXN];
void build()
{
for(int i = 1;i <= n;++i)b[i] = h[i];
sort(b + 1,b + 1 + n);
N = unique(b + 1,b + 1 + n) - b - 1;
for(int i = 1;i <= n;++i)v[i] = lower_bound(b + 1,b + 1 + N,h[i]) - b;
b[0] = -1;
return;
}
}
namespace PresidentTree
{
struct node
{
int lc,rc;
int sum;
node(){sum = 0;}
}t[MAXN * 31];
int ptr = 0;
int newnode(){return ++ptr;}
#define mid ((l + r) >> 1)
int root[MAXN];
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
void insert(int &rt,int p,int l,int r)
{
if(p == 0)return;
int k = newnode();t[k] = t[rt];rt = k;
++t[rt].sum;
if(l == r)return;
if(p <= mid)insert(t[rt].lc,p,l,mid);
else insert(t[rt].rc,p,mid + 1,r);
return;
}
void init()
{
build(root[0],1,N);
for(int i = 1;i <= tot;++i)
{
root[i] = root[i - 1];
insert(root[i],v[Tree::pos[i]],1,N);
}
return;
}
int query(int rtr,int rtl,int k,int l,int r)
{
if(t[rtr].sum - t[rtl].sum < k)return 0;
if(l == r)return l;
int rs = t[t[rtr].rc].sum - t[t[rtl].rc].sum;
if(k <= rs)return query(t[rtr].rc,t[rtl].rc,k,mid + 1,r);
else return query(t[rtr].lc,t[rtl].lc,k - rs,l,mid);
}
}
int calc(int p,int x,int k)
{
p = Doubling::calc(p,x);
int lef = Tree::rnk[p],rig = Tree::rnk[p] + Tree::siz[p] - 1;
using namespace PresidentTree;
return query(root[rig],root[lef - 1],k,1,N);
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
for(int i = 1;i <= n;++i)h[i] = rd();
for(int i = 1;i <= m;++i)
{
es[i].u = rd();es[i].v = rd();
es[i].w = rd();
}
Kruskal::build();
Doubling::build();
Discretize::build();
int p,x,k;
PresidentTree::init();
int lastans = 0;
for(int i = 1;i <= q;++i)
{
p = rd();x = rd();k = rd();
if(lastans != -1)
{
p ^= lastans;
x ^= lastans;
k ^= lastans;
}
int ans = Discretize::b[calc(p,x,k)];
lastans = ans;
printf("%d\n",ans);
}
return 0;
}
In tag:
数据结构-kruskal重构树 数据结构-主席树
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡