卧薪尝胆,厚积薄发。
DZY Loves Math V
Date: Wed Oct 03 19:24:56 CST 2018
In Category:
NoCategory
Description:
求:
$$
\sum_{i_1|a_1}\sum_{i_2|a_2}\cdots\sum_{i_n|a_n}\varphi(i_1i_2\cdots_n)
$$
$1\leqslant n\leqslant10^5,1\leqslant a_i\leqslant10^7$
Solution:
看到
$\begin{align}\sum_{i|a}\end{align}$
这种形式就有一个重要的方法是把它每个质数拆开来分别考虑,由于欧拉函数是积性的,所以这题也是。
设:
$$
a_i=\prod_{j=1}^mp_j^{t_{i,j}}
$$
$$
\sum_{i_1|a_1}\sum_{i_2|a_2}\cdots\sum_{i_n|a_n}\varphi(i_1i_2\cdots i_n)
$$
$$
=\prod_{i=1}^m(\sum_{i_{1,i}=0}^{t_{1,i}}\sum_{i_{2,i}=0}^{t_{3,i}}\cdots\sum_{i_{n,i}=0}^{t_{n,i}}\varphi(p_i^{\begin{align}\sum_{k=1}^ni_{k,i}\end{align}}))
$$
$$
=\prod_{i=1}^m[(\prod_{k=1}^n\sum_{i_{k,i}=0}^{t_{k,i}}p_i^{i_{k,i}}-1)\times\frac{p_i-1}{p_i}+1]
$$
所以可以暴力
$O(\sqrt N)$
分解质因数,再维护一个
$p^i$
的前缀和,后面那个分式用逆元计算就行。
总之就是质数拆开枚举约数变为枚举质数的指数的那个套路。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n;
#define MAXN 100010
#define MOD 1000000007
int a[MAXN];
int tot = 0;
struct prime
{
int k,t;
}p[MAXN * 20];
void divide(int k)
{
int s = k;
for(int i = 2;i * i <= k;++i)
{
if((k % i) == 0)
{
int cnt = 0;
while(s % i == 0)
{
++cnt;
s /= i;
}
++tot;p[tot].k = i;p[tot].t = cnt;
}
}
if(s != 1)
{
++tot;p[tot].k = s;p[tot].t = 1;
}
return;
}
bool cmp_k_t(prime a,prime b){return (a.k == b.k ? a.t > b.t : a.k < b.k);}
typedef long long ll;
ll power[40];
void calc_power(int k)
{
power[0] = 1;
for(int i = 1;i <= 31;++i)power[i] = power[i - 1] * k % MOD;
for(int i = 1;i <= 31;++i)power[i] = (power[i - 1] + power[i]) % MOD;
return;
}
ll quick_power(ll a,int b)
{
ll res = 1;
while(b > 0)
{
if(b & 1)res = res * a % MOD;
a = a * a % MOD;
b = b >> 1;
}
return res;
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)scanf("%d",&a[i]);
for(int i = 1;i <= n;++i)divide(a[i]);
sort(p + 1,p + 1 + tot,cmp_k_t);
ll ans = 1,res = 1;
for(int i = 1;i <= tot;++i)
{
if(i == 1 || p[i].k != p[i - 1].k)calc_power(p[i].k);
res = (res * power[p[i].t]) % MOD;
if(i == tot || p[i].k != p[i + 1].k)
{
ans = (ans * ((res - 1 + MOD) % MOD * (p[i].k - 1 + MOD) % MOD * quick_power(p[i].k,MOD - 2) % MOD + 1)) % MOD;
res = 1;
}
}
cout << ans << endl;
return 0;
}
In tag:
数学-欧拉函数
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡