卧薪尝胆,厚积薄发。
DZY Loves Math VI
Date: Wed Jul 04 15:41:10 CST 2018
In Category:
NoCategory
Description:
$\begin{align}\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)^{gcd(i,j)}\end{align}$
$1\le N,M\le 500000$
Solution:
$\begin{align}\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)^{gcd(i,j)}\end{align}$
$\begin{align}=\sum_d^{min(N,M)}\sum_{i=1}^N\sum_{j=1}^M(\frac {ij} d)^d[gcd(i,j)==d]\end{align}$
$\begin{align}=\sum_d^{min(N,M)}d^d\sum_{i=1}^{\lfloor \frac N d\rfloor}i^d\sum_{j=1}^{\lfloor \frac M d\rfloor}j^d\sum_{k|i,k|j}\mu(k)\end{align}$
$\begin{align}=\sum_d^{min(N,M)}d^d\sum_k^{min(\lfloor\frac N d\rfloor,\lfloor\frac M d\rfloor)}\mu(k)\sum_{i=1,k|i}^{\lfloor \frac N d\rfloor}i^d\sum_{j=1,k|j}^{\lfloor \frac M d\rfloor}j^d\end{align}$
$\begin{align}=\sum_d^{min(N,M)}d^d\sum_k^{min(\lfloor\frac N d\rfloor,\lfloor\frac M d\rfloor)}\mu(k)\sum_{i=1}^{\lfloor \frac N {dk}\rfloor}(ik)^d\sum_{j=1}^{\lfloor \frac M {dk}\rfloor}(jk)^d\end{align}$
$\begin{align}=\sum_d^{min(N,M)}d^d\sum_{k|d}^{min(\lfloor\frac N d\rfloor,\lfloor\frac M d\rfloor)}\mu(k)k^{2d}\times\sum_{i=1}^{\lfloor \frac N {dk}\rfloor}i^d\times\sum_{j=1}^{\lfloor \frac M {dk}\rfloor}j^d\end{align}$
后面那个式子可以递推
Code:
#include
#include
#include
#include
#include
#include
using namespace std;
int n,m;
#define MAXN 500010
#define MOD 1000000007
int prime[MAXN],tot = 0,mu[MAXN];
bool isprime[MAXN];
void init(int n)
{
for(int i = 2;i <= n;++i)isprime[i] = true;
mu[1] = 1;
for(int i = 2;i <= n;++i)
{
if(isprime[i])
{
prime[++tot] = i;
mu[i] = -1;
}
for(int j = 1;j <= tot && i * prime[j] <= n;++j)
{
isprime[i * prime[j]] = false;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else
{
mu[i * prime[j]] = -1 * mu[i];
}
}
}
return;
}
typedef long long ll;
ll powd[MAXN],sum[MAXN];
ll power(ll a,ll b)
{
ll res = 1;
while(b > 0)
{
if(b & 1)res = res * a % MOD;
a = a * a % MOD;
b = b >> 1;
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
init(min(n,m));
if(n > m)swap(n,m);
for(int i = 1;i <= m;++i)powd[i] = 1;
ll ans = 0;
for(int d = 1;d <= n;++d)
{
ll res = 0;
for(int i = 1;i <= m / d;++i)
{
powd[i] = powd[i] * i % MOD;sum[i] = (sum[i - 1] + powd[i]) % MOD;
}
for(int i = 1;i <= n / d;++i)
{
res = (res + mu[i] * powd[i] % MOD * powd[i] % MOD * sum[n / i / d] % MOD * sum[m / i / d] % MOD + MOD) % MOD;
}
ans = (ans + res * power(d,d) % MOD) % MOD;
}
cout << ans << endl;
return 0;
}
In tag:
数学-莫比乌斯反演
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡